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OPTIMAL POISEUILLE FLOW IN A FINITE ELASTIC DYADIC TREE

B. MAUROY! AND N. MEUNIER?

Abstract. In this paper we construct a model to describe some aspects of thenagibn of the

central region of the human lung considered as a continuous elasticilyrédle medium. To
achieve this purpose, we study the interaction between the pipes comgusimge and the fluid
that goes through it. We use a quasi-static approximation to determine thengef radius of
each branch. Then, we solve a constrained minimization problem, songisitaize the viscous
(dissipated) energy in the tree. The key feature of our approach is¢hefa fixed point theorem
in order to find the optimal flow associated to a deformed tree. We alsosgivee numerical
results with interesting consequences on human lung deformation duirgteon, particularly

concerning the localization of trejual pressure poiEPP).

1991 Mathematics Subject Classification.

1. INTRODUCTION

The goal of this paper is to study mathematically and nura8yithe interaction between a finite dyadic
elastic tree made of cylindrical pipes and the fluid that gbesugh it. The fluid is assumed to be viscous,
to have given fluxes at the outlets and to flow according toeRiis’s law. First we consider the case of a
rigid tree. Following [3], we establish a relationship beam the fluxes and the pressures at the leaves in the
case of a non regular tree (i.e. aregular tree has constiinataach generation). However, in the contrary
of [3] where the tree considered is rigid, we assume thatréee liranches have elastic walls. Under the
assumptions that the elastic deformation’s law of the pipésear and that the pipes stay cylindrical after
deformation, we give a quasi-static model of the branchrdeéition mechanism. The deformed radius of
each branch is obtained by considering the balance betwednternal pressure due to the fluid flow and
the external pressure due to some strains. Although, thesspghastic law and the relation between the
pressure and the flux are linear, the elastic model of thechrdeformation mechanism is nonlinear and
the main difficulty of this problem stays in the geometry o thee. Then, considering a viscous energy
term, we study an optimization problem for fluxes at the dsithth respect to a tree. Generally, the given
fluxes and the deformed tree do not satisfy this optimalitydition, that is to say that the dissipated energy
of the flow in the deformed tree has not a minimal value. In ptddind a more realistic deformed tree in
the sense that the dissipated energy of the flow in the defbtree has an optimal value, we use a fixed
point theorem.

A motivation for this modeling problem is the constructidhaosimple and global mechanical model
of the central region of the human lung in the case of smalbredtions. The bronchial tree of the
human lung can be viewed as a dyadic net of pipes composedgefiz8ations. More precisely, according
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to [5-7, 13], we can distinguish three parts in this tree.himfirst part, mainly from the first generation

to the fifth generation, there is some cartilage and the pipesbe assumed to be rigid. Moreover, the
effects of inertia in the flow are large and correspond to thdinear Navier-Stokes regime. In the middle
part, mainly from the sixth generation to the sixteenth gatien, the effects of inertia are smaller. This
validates the Poiseuille regime (see [3,5-7,13)), at lieaigest respiratory regime. In this part of the tree,
cartilage does not exist and there are interactions betwveefiuid and the walls of the pipes. In the last
part, the tree function becomes different (beginning ofeyahange with blood).

The plan of the paper is as follows. We begin with some natatia Section 2. Assuming that some
incompressible, viscous and non-inertial fluid flows thiowgsingle pipe, our first step, in Section 3,
consists in modeling the deformation mechanism of the gipen, in Section 4, we consider a finite dyadic
tree and we express the deformation for the whole tree whidloais through it according to Poiseuille’s
law. In Section 4, we build the optimal air flow distributioh the leaves of the tree that minimizes an
energy functional corresponding to the dissipated visanergy for a given tree. In Section 5, using
a fixed point theorem, we prove the existence of a deformatiahof an air flow distribution such that
this air flow applied to the tree minimizes the energy funwiicassociated to this tree after deformation.
Finally, in Section 6, we present a few numerical simulagiand applications of this theory to the human
lung, particularly concerning the localization and pragien of theequal pressure poi(EPP). This point
is defined as the point (indeed the pipe in our case) of thenthege the deformation is equal to zero and
which is such that behind this pipe, there is an inflation dtet #his point there is a reduction of the radii
of the pipes. In Appendix, we give the details about the nicakscheme used to compute the fixed point
defined in Section 5 and we give some estimates to determéneotivergence condition and convergence
speed of the scheme.

2. NOTATIONS

Let us begin with a short review of the different notatiorsttivill be used.

The set of square real matrices (resp. invertible real negrisymmetric real matrices and symmetric
positive definite real matrices) of si2é x N is denotedM v (R) (resp.GLy(R), Sx(R) andS;*(R)).
Some other matrix sets will be introduced in section 4 andefplixes A and B (such ay andPy).

We will use the matrix normi||.|||. subordinate to the euclidean nofi|. (i.e. if M = (m;;) then

MX
[[1M][]2 = supx 0 WEELE),

A vector (ag, a1, ..., an) Will be such thaw; is at position.

Atree of heightV will be denoted byZ, the nodes and branches will be indexed apd the generation
number will be denoted bi(i). The notion of patiI on the tree will be introduced in Section 4. The total
outgoing flux in the root node will be denoted iy while qr,, (resp.pz, ) will denote the vector whose
components (denoted by (resp.g;)) are the fluxes (resp the pressure) in the branches (redpe abdes)
andq (resp.p) will denote the vector whose components (denoteg;lyesp.q;)) are the fluxes (resp. the
pressures) at the outlets. Several exterior pressures/Blye, P, and P2, will be introduced in order
to allow to solve equation from which the radin®f the deformed tree will be deduced (our approach is
guasi-static).

The symbolJ will denote the real vector made of ones, ie= *(1,...,1). Its size will correspond to
the number of leaves of the tr@g; considered, namely".

Cylindrical coordinate$z, 6, ) will be used.

The symbok will be used for equivalent functions.

3. BRANCH DEFORMATION MECHANISM

In this section, we present the deformation mechanism indbe of a single brandB. The deformation
mechanism for the whole tree will be presented in Section 8 c@sider an incompressible, viscous and
non-inertial fluid which flows through a single elastic pipelave look for the deformed pipe.

First, for such a fluid, we recall that the pipe is charactstiby its resistance which is the ratio of
the pressure jump between its ends over the flux. Next, asguthat the branch stays cylindrical after
deformation and that the constitutive law of the wall is &newe build an elastic model of the branch
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deformation mechanism (which is nonlinear because hydhraycal resistance is a nonlinear function of
branch radius) depending on the pressure jump betweenstueiand the outside of the branch.

In the case of the human lung, the assumption that the pipainsneylindrical can be explained as
follows. First, the variation of the external (and inteprialessure in the pipe is small and can be assumed
to be equal to zero. Next, for those pipes located betwee6tthand the 16th generations, there exists an
external strain which acts on all pipes through smooth nessglith spiral shapes along the pipe wall).

Let us begin with some notations used in this Sectinis a cylindrical elastic pipe of radiusand
of length L. The pressure is supposed to be uniform over each end segtieninlet is referred ta (for
above) and the outlet to(for below). The flowg going throughB is chosen positive when the fluid goes
from b to a. We assume that the branch is submitted to a uniform extpreasureP, ;.

3.1. The Poiseuille law

Here, we assume that the pipe is rigid so that there is ncaictien between the fluid and the pipe. In
such a case, the external forces acting on the fluid can baatkared by both valueB, and P,. The
linearity of the Stokes equations ensure the existence o&#iicient R > 0 which relates the fluy and
the pressure jump, — P,

P, — P, = Ry. (3.1)

By analogy with electric conductors (flux and pressure retigady play roles of intensity and potential),
R is called the resistance of the pipe. It depends on the gemaletharacteristics of the pipe and on the
viscosity u of the fluid:

_8uL L

R =C—, C>0. (3.2)
T

=
3.2. Flow through an elastic pipe

Now we consider interactions between the fluid and the pipér(z) denote the equilibrium radius of
a section of the branch. It depends on the positiom the axiq0, L]. Under the following hypothesis:

(1) The pipe remains cylindrical after deformation, i-€z) = r,
(2) The fluid flow is stationary (i.e. flux is not time dependent

we first prove that the equilibrium state of the branch is ghehits radius is a positive root (if it exists) of
the equation:
. L

—t(r)r® 4 (Po — Peat)r* + —Cg =0, (3.3)
wheret is the superficial lineic tension arfg..; is the external pressure. Since our approach is quasi;stati
we give mechanical data corresponding to different statékeobranch. These data will allow to solve
(3.3). We end this section by solving (3.3) and by giving kagion the solution which will be useful for
the constrained minimization problem (fixed point theorem)

3.2.1. Equilibrium state of the branch

Let us establish (3.3). To do so, consider a small portiontwbachi B (see Figure 1). The superficial
lineic tension is given by a functionwhich depends on the radiusof the branch. In order to force the
branch to stay cylindrical, we introduce the following tangjal forceF;. Itis tangent to the branch surface
and the resulting force ofB is:

dF; = t(r)7(0)L — t(r)r(6 + dO)L,
wherer is the tangential vector.
The external pressure force on a small até® = r df dz is given by the external pressure times the

surface, ieP.,; dS. Its direction is normal to the surface (along vectd#)) and inward the center of the
branch. Since the external pressure is assumed to be cbaktammund the pipe, o6iB, we have :

L 6+ do 6+ do
dFp,, = —/ / Popn(n)rdndz = —PemrL/ n(n) dn.
o Jo 0
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FIGURE 1. Tangential forces orientations on an elemadstof the branch surface.

The internal pressurg;,;(z) at positionz € [0, L] is due to the flow; inside the branch and is given
by Poiseuille relation (3.1) with (3.2):

z
P, =P, +C—q.
t(2) + a4

Hence the mean internal pressiig; in the branch is

L

Py = P+ C—q.
t + 944

Since we assume that the pipe stays cylindrical after deftiom (which can be viewed as saying that the
internal pressure is supposed to be constant and equalnieée value thanks to the fact that the external
pressure is constant), the internal mean pressure fortieg @n the portion of branch is directed along
n(#) and from the center of the branch toward its surface and engdy:

Prean =1L dFp,

Wlth 2 6+ do
Cq L ‘
dFp,,, = (ParL + 73 - )/ n(n) dn.
[

Moreover, we have:
0+ do
/ n(n) dy = —7(0 + d9) + 7(8) = n(6) do.
0

Hence, ifé B is in a quasi-static state:

L2
0= dF, + dFp_, + dFp,, = [t(r)L 4 (Py— Poy)rL + 02‘17]71(9),

therefore, the equilibrium state of the branch is such tisatdius is a positive root (if it exists) of (3.3).

3.2.2. Mechanical data and definitions

Let us now give some mechanical data on the branch whichidests mechanical behavior. This will
allow us to solve equation (3.3). First, in the segBgwill denote a fixed pressure value.

Let us next explicit three specific branch radii correspogdb different values of pressure and flux
appearing through this model. The different radii of a brafcare linked together through mechanical
equilibrium equations. This branch is assumed to have aonstined radius® under the pressurg,
(see (3.6) below). For human lung, this state will corresjptorthe case of a dead body. The lung is almost
collapsed. Then, we modify the exterior pressurétp, and we consider that there is no flow inside the
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branch. The radius of the pipe#§ solution of (3.7) (see below). This radiu$ corresponds to Weibel’'s
data [13] and-C is calculated fromr¢ equilibrium equation (3.7). We assume that

Pl # Po. (3.4)

The last step consists in modifying the exterior pressur&g and in applying a non-negative flux
through the pipe. Hence, we obtain the final radiuSince we consider expiration, we assume that

Pe2:rt > Pelzt' (35)
Let us now go further into details.
Definition 3.1. Unconstrained radius:
We denote by the branch radius satisfying
t(r’) = 0. (3.6)

It is a solution of (3.3) wher.,; = P, = P, and when there is no flow going through the branch, i.e.
qg=0.

Definition 3.2. Initial radius:
We denote by-¢ the radius which corresponds to the branch geometry (i.titiso of (3.3)) when
P..; = P, satisfying (3.4),P, = P, and when there is no flow inside the branch. In this case, this

geometryre satisfies the following equilibrium:

—t(r®) + (Py — P!

ext

)re =0 (3.7)

In the sequel, it will be referred to as antial state.

Definition 3.3. Final radius:

We denote by a solution of equation (3.3), if it exists, whef,; = P2, with (3.5) and the flux is
given, assumed to be non-negative. This situation corredpto a deformed branch with a flapinside.
It will be referred to as &inal state

Let us now explain the elastic latywe consider the linear case:

t(r) = B(w)(-5 — 1),
whereE (w) depends on the Young modulus and the widthf the branch. More precisely, the terf{w)
is a lineic force and corresponds to the resultant of eifitiorces on a unit section of bronchial wall,
hence this corresponds fow whereF is the Young modulus, see Figure 2.

Note that such a definition corresponds to a mono-dimenkgirnag model for walls behavior. In
particular, it neglects the wall deformations in other diifens than the longitudinal one (like thickness
changes). This choice is a coherent approximation with theqaling approximations of small deforma-
tions and constant radius along the whole branch. Notetthlsid limits the number of parameters involved
in the model. It is however possible to give an alternate d&finassuming thin plate behavior and involv-
ing the Poisson’s ratie of the branch walls. In this casé;(w) could be expressed b§w/(1 — v?).
Because tissues are almost incompressible; 1/2 and this induces a supplementalry3 factor to our
choice of E(w).

According to data from [9], we use a linear dependence betweenchial radius and bronchial wall
thickness of the typew = ~r¢. In [9], estimated values of are betweer2/5 and1/2. In the following
we will usey = 2/5, hence

2 ..
Although such a law is not realistic in the sense ti{a) does not tend te-co whenr goes to zero

(which should be the case in order to describe the fact tledbitinch cannot collapse in vivo), it is a good
approximation for a first study.
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FIGURE 2. The lineic elastic forc@(w) acting on the gray sectiof can be written
F=ES=F xwx 1, whereE is the material Young modulus andits thickness}’
units areN/m. HenceE(w) = Ew.

Remarkl. The existence of¢ depends on the sign % — P.,, + 2£, which we assume from now on to
be positive. Moreover, we assume that> r°, which corresponds to

Py> P, (3.9)

3.2.3. Study of equation (3.3) and definitionf- r(q):

In this paragraph, we study hypothesis under which equg8d@) admits a unique solution, we give
some monotonicity results and we state some estimates aladiieand pressures. These properties are
necessary in order to obtain the existence of a deformed seebelow Section 4. This part is rather
technical and it can be left apart by the reader who is intedds the modelling part of this work.

More precisely, we assume that (3.5-3.9) are satisfied atthhinlet pressure satisfifs €] P, pmaz|
with Pin | pmaz he given. Let > 0 andr¢ > 0 satisfy (3.6) and (3.7) respectively wittr) given by
(3.8) and

L = 6r°. (3.10)

This last hypothesis corresponds to physiological obsenswhich show that in average length over
radius of the branches of the lung is close to six [12, 13].

Recalling (3.7) and (3.8), equation (3.3) becomes:

el Gl P + (Pl = Pee) 150 _,, (3.11)
which, for simplicity, we rewrite as: ’
Galr,q) = a% +14 n%, (3.12)
with
a=—-1- 5((P0 ~ )+ Peat Pelm)) andn = 15¢ > 0. (3.13)

2F 2F

Proposition 3.4. Letq > 0 anda < 0 be fixed, them, (r, ¢) = 0, with g, (r, ¢) given by (3.12), admits a
unique solution that is denoted b (¢). Moreovera — r*(gq) andg — r(q) are increasing functions.
Furthermore, the function € [0; +oo[— 7%(q) IS C*

Proof. Let¢ > 0 anda < 0 be fixed. Using the continuity and the strictly decreasingrabter of the
functionr — ¢, (r, ¢) on]0, +-oo] together withim, o+ g (r, ¢) = +o0if ¢ > 00rlim, g+ go(r,q) =1
if ¢ = 0andlim,_, ;- g.(r, ¢) = —00, we obtain the existence and uniqueness of then®ot 0.
Leta; < ay < 0, by definition,g,, (r*, ¢) = ga, (%2, q¢) = 0 andg,, (r**,q) = (a2 — al)T:;
then we deduce the increasing charaeter r%(q) from the decreasing characteriof- g,(r, q).
The increasing character gf— r%(q) is obtained similarly. O

> 0,
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Proposition 3.5. Under the same hypothesis as Proposition 3.4, the funetion r%(¢) is an increasing
function and

r(e) "N (SHEE)E and po(g) AT

Proof. The increasing property is shown similarly as in the presiBuoposition and the equivalents are a
direct consequence of the definitiongf. O

Remark2. In this remark we give some estimates which will be used ferr#itursive construction of the
deformed tree (see Section 4).

Assume that there existg’®® > 0 anda™" < o™ < (), with ¢ € [0; ¢™**] anda €]a™™; a™ae|.
From Proposition 3.4, we deduce that

min max

0<r® " (g™™) < r%(q) < (¢M). (3.14)
In the sequel, we will simply denote™ ™" (™) by r™in andre™" (gma®) by rmae
The existence of™** < ( is satisfied when

2F

Pyt < Po+ (Pl = Plot) + 5 (3.15)
which corresponds to a value f&2,, and/or to values foF that are large enough.
Moreover, we have tha?g”m < Py < P*, with
] ré ] ré
Pbrnzn = Pa + 6cﬁqmln andPg‘naz — Pa + 6cﬁqmaz (316)
Tmaw rmzn

4. HNITE TREE

We start this section with some notations and definitiondifiote tree. Then for a rigid tree we state
the relations between the fluxes at the leaves and the pessisuthe nodes. In such a case, there is no
interaction between the fluid and the tree. The main diffezemith [3] is that we study more general rigid
trees (non regular trees) for which the branch radii are rmrstant on a same generation. This study,
which is technical, is needed in order to construct the aaéartree in the general case. Then, we consider
the case of an elastic tree and we investigate the deformatéchanism described in the previous section
for the elastic pipes (composing the tree) in which an inc@sgible, viscous, non-inertial fluid flows.
Note that a more theoretical study of finite and infinite tres\done in [11].

4.1. Notations and preliminaries

From now on, we will consider a finite dyadic three dimenslidree with V 4 1 generations (of height
N). It will be denoted byZy. In such a tree, there are the ro2t! leaves 2V ! nodes an@™V+! — 1
branches. We denote by = { Xy, (X;)1<;<anv+1_1} the set of the nodes, where nodes are indexetl by
for the root node and e {1,...,2N*1 — 1} for the other nodes. We use the convention that the two nodes
steaming fromX; are X,; and X5, 1, see Figure 3. The set of branche8is = {(B;)1<;<a~n+1_1} With
the convention that branchends at nodé and is the set of the branches. o

Definition 4.1. Let k£ and! be the mappings defined as follows:
k : ieN*— k(i) € Nsuch thae*® <iand2¥®O+! > ¢
I ieN* = I(i)=i— 2k,
If ¢ is a branch or a node index, théri) € {0,..., N} indicates the generation number al{d) <

{0, ...,2F — 1} is the position on thé-th generation.
For simplicity, wheni is given, we denoté(¢) andi(i) by k£ andi.

Definition 4.2. Atree is said to beegularif the radii (resistances) have a constant value on eaclraggore
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FIGURE 3. A four generation tree schem#&' (= 3): the nodes are represented by the
disks (total numbe2V+! = 16), while the branches are represented by lines (number
2N+1 _1 = 15). The root node is the gray filled disk, tb& = 8 leaf exits are the blank
disks.

In order to establish a relationship between the fluxes detinges and the pressures at the leaves in the
case of a non regular tree (see Proposition 4.5 below), we twaVfollow" the fluid through paths in the
tree. Therefore, it is necessary to define the notions of gadlsub-path oy .

Definition 4.3. Leti € {1,...,2Y*1 — 1} be given, the set of the indices of branches corresponding to
the k(¢) + 1 branches that link the root node to th¢h node is denoted b, _,;. It is the set of strictly
increasing integers: ‘ .
i (I
H0—>i = {[27] = 17 ) [5]#}7 (41)
where].] denotes the integer part.
Letm € {0,..,k(i)}, ITo—;(m) is the subset of,_,; defined by

1 1

Mo—s(m) = {l5z] = L gz} (4.2)
LetII;_,;, fori > j, be defined as follows:

= Mo \ oy if j €Ilp;.

4.2. Flow through a rigid dyadic tree

We consider an incompressible, viscous and non-inertia fidnich flows through a tre@y of con-
nected pipes. Each pipe is characterized by its resistae¢3sl) and (3.2). Our first step, as in [3],
consists in establishing a relationship between pressumgfluxes at the leaves.

4.2.1. Pressure, flux, resistance and radius associated @ith

In the sequel, we will denote b¥,.,,; the pressure at the root node that we will assume to be non-
negative. We will denote by, a reference pressure that we will also assume to be noniveg&trac-
tically, Py will correspond to atmospheric pressure. Moreover, in #eeof the human lung, the region
where this analysis could be valid is the central regionchehe pressureB, and P,..; are different.
Furthermore, since we study the expiration phase, we asthahe

Proor > Fp. (43)
We denote bypr, (respqr,, rr, andRyz,) the pressure vector (resp. flux, radius and resistance

vectors) whose components are the pressure (resp. flugsradd resistance) on the nodes (resp. branches)
of 7yy. Since the pressure at the root node is giverPhy,, this can be written as:

P71y = t(Prootaﬁhﬁ% -~-7p~2N+171)a

a7y = t((jla 627 ey qQNJrl—l)'
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The vectorsr7,, andRr, are defined similarly t@r, . Furthermore, the total resistance associated with

the pathll,_,; is:
Ru,_,= »_ Rj

j€lp—;

For the radius and the resistance associated with a treejlix@mit the subscript, when no confusion
arises.

4.2.2. Relation between pressure and flux at leaf exitg,pf

From now on, leaf exits of the tree will be indexed(y.., 2" — 1. Moreover, the pressure (resp. flux)
vector at leaf exits will simply be denoted Ipy(respq) with:

p="(po,....,;ov_1) and q="(qo,...,qan _1).

Remark3. Recalling notations introduced in the previous section asxeh

p:t(ﬁQNa"'aﬁQNJrl—l) and q:t(QQNv"'quNJrl—l)'

Definition 4.4. Given two positive integersand; and their binary expansions

i=> ap2®, j=>" 2% with ag, B € {0,1}, VE,
k=0 k=0
we definey; ; as
v =inf{k >0, oy = B VI > k}. (4.4)
Let us now state the relation between pressure and flux ad}éaf Since the proof is similar to the one

which was done in [3] (Proposition 1.2.) in the case of a regtree, we do not repeat it here and refer the
interested reader to [3].

Proposition 4.5. We consider a full dyadic tre@y characterized by its radius and its resistancéR.
Supposing that the root node is at pressiréhen pressures and fluxes at leaf exits are related by

p= BN(r)qa BN(I") = (BN(r)i,j)ogi,jg2N—1 € My~ (R),

with

BN(I‘)L]' = RH (45)

0—i+2V (N—vij)-

When the pressure at the root node’js,; > 0, the relation between pressures and fluxes at leaf exits
is obtained by addind’.,.; to the pressure given in Proposition 4.5.

Remarld. Similarly, it is possible to express the pressure on eack acdording to the fluxes at the outlets
using the following equalities:

opi
dq; Fo

(k—v )

j A
oﬂz+2[2N*k] e

forj € {0,...,2N —1},i € {1,...,2N¥"1 — 1} withi = [ + 2*.
Definition 4.6. We denote by3y the set of matrice®” (r) which satisfy (4.5).

From the definition 4.6, it follows thd?y is a subset of (R). Itis also possible to give the following
equivalent expression of the matricesiR :
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- RyIN 0
RJY 0 0 0
0 RsI¥N 0 0
_ 4.6
oo 00 Ry 0 (4.6
0 0 0 Ry
Rov 0 .. 0
4o+ 0 R2N+1 0 O \
0 0 0 Ron+1 g

where0 is used forOIﬁi) with Iﬁi) € My~ —x» (R) is @ matrix of ones.
Note that we also have another expression for the pressure

pi = ﬁH_QN = Z quj (47)

jenoﬂwzf\’,
Remarks. When the tredy is regular, the matrix3” (r) takes the following form, see [3]:
B, =SNn_u,,, (4.8)
wheres,, is the cumulative resistand®, + R; + ... + R,,. In this case, up to a multiplicative constant, the

matrix BY (r) is a doubly stochastic matrix which admits the Haar basisgesieector basis.

In the case of a non regular tree, the properties of the neatB¢ (r) are given in Appendix A. These
results will be used in the proof of Theorem 6.4.

4 3. Tree deformation mechanism

We are interested in the modeling of air flow in the bronchie¢tand we focus on the expiration phase.
In such a phase, since the pressure at the root fige is assumed to be non-negative, the pressures on
the whole treep; are also non-negative. More precisely, going from the rédhe tree to the leaves, the
pressures on a path are not decreasing. This is a conseqfahesassumption that the leaf’s fluxes are
non-negative. Hence, the fluxes on the whole tree are alsmegative.

First, we give some technical definitions and mechanical datl then we state our main result which
is Theorem 4.9.

4.3.1. Definitions and mechanical data
Let @ be the total outgoing flux in the root node.

Definition 4.7. We say that a leaf flux vectey € R?" is e-admissiblewhen it satisfie$.Jqg = ® and
¢ > ¢ Vie{0,...,2NV —1}. (4.9)

We denote by, the set ofe-admissible leaf flux vector. Moreover, we denfte= )y and in such a case
(e = 0) q € Qis simply calledadmissible

The following Lemma will be useful in order to work with sttlig positive flows in every branch of the
tree. This property easily comes from the Kirchhoff’s laydPplied to the fluxes at branches bifurcations.

Lemma 4.8. Let® > 0 be fixed andy € R2" be ane-admissible leaf flux, then for alle {1, ..., 2V+1 —
1}, the following inequality holds

2N=Ie < g < ® — (27 — 1) 2N e, (4.10)
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wherej = k(i) € {1, ..., N} is the generation number of

Remark6. In the sequel, we will use the following notationg" = 2N~Je andg*** = & — (27 —
1) 2V =J¢, with e depending o well-chosen, see Proposition 6.2 below.

We now study the case of an elastic dyadic tfgein which flows an incompressible, viscous and non-
inertial fluid with a given total flux®. Similarly to Section 3, we consider three different statiethe tree:
unconstrained trednitial tree andfinal treg when every pipe of the tree has a radius which is respegtivel
in unconstrainegdinitial andfinal state. We neglect the gravity and the exterior pressuresisnasd to be
uniform all around the tree. We denote BY,, and P2, the exterior pressures associated with the initial
and final state respectively with?,, > P} ,.

More precisely, theinconstrained treewhich is denoted by is such that its radius vector, denoted

byr® € R2" "' -1 satisfies:

ti(77) =0, (4.11)
on every branci;, i € {1,...,2V*1 — 1}, with
A
ti(r) = 5Erf(f—0 —1). (4.12)

i
Theinitial tree, which is denoted by 5 is such that its radius, denoted Bfysatisfies on every branch:
—t;(7¢) + (Py — PL,)7¢ = 0. (4.13)

Finally, letq € €2 be given, thdinal treg which is denoted by is such that its radius vector, denoted
by r, is a solution (if it exists), for all > 1, of the following equation:

i (r,q) =0, (4.14)
with
T di
i (r,q) = Qize +1+ U= (4.15)
and
5((P0 _ﬁ[é])—i_(Pe%vt_Pelwt)) 15C
Qi = —1- 2F andn = ﬁ > 07 (416)

with the convention thaiy = Pro:.

Remark7. Sincea; depends om and onq, we should denote;(r, q). Indeed in (4.16) we see thag o)
depends ori; /o) andgy; /o). For simplicity we will omit this dependance.

Remark8. From now on, when a tre&y will be mentioned, it will be clear that it will be with an unge
strained tre¢y and with an initial treeZ <.

4.3.2. Main result

Now, we can define the tree deformation funct@ioy:

2N

G 10,400l [0, +00r — R (4.17)
(r,q) — (Gi(r7Q):gi,ai(l‘aQ))gigzNﬁqa

whereg; o, (r, q) is given by (4.15). This is obviously@>-function.
The study of the properties 6 is postponed into Appendix C.1.

Theorem 4.9. Assume thaP,.; < Py + (P%, — PL,) + 2E and thatq € [0,+oo[>" is such that

tJq = ®. There exista €]0, +oo[N such that the following holds:

for all tree Ty satisfyingi > ay (), forall i € {1,...,28*" —1 -2V},
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there exists real numbers*" < o"* < () such that
forall a; €]af"™; a"*"|, there exists a unique solution 6%r, q) = 0,
with G given by (4.17). This solution is denotediSY(q) = (7" (¢:))icq1,... .28 +1 13-
Furthermore, there exists strictly positive real numb(e*@gi", 7'%)1<j<n suchthatforalt in {1, ..., N+ _

1}

< (@) < (4.18)
with j = k(i).

Moreover the functiory — r*(q) is C* for q € [0, <I>]2N

Proof. We will proceed recursively on the generations. Lgtbe a tree of heighV. Recalling Proposition
3.4, condition (3.15) withP, = P, is exactly the hypothesiB, ... < Py + (P2, — PL,) + 2£, hence

we know that there exists real numbesg” < af**® < 0 such that for alky; €]a""; a2 |, there exists
a unique solution, denoted by* (q), of g1, (r,q) = 0. Moreover, recalling Remark 2, we deduce that

P < pr < et (4.19)
where ~
i T i - T
PY" = Proot + 6C———q{""" andpy*** = Poo; + 6C ————3{"", (4.20)
(rr2) (i)
with ‘
f{nvn _ flalmun(q) _ ,Fiél ) (‘I’) andf{"'“” _ ,i;tlthax(q) — 7;?1 N (‘I)) (4_21)
Next, we want to obtaia*" anda4*** such that5** < 0 and
ozg”" < ay < ay*** along Withozg”" <ag < ayt?® (4.22)
where
| 5((P = Bm) + (P2, — PLy)
min ] _
@2 °F 7
5((Py = 579%) + (P2, — Ply))
mez  _ | _ .
@2 °F
Inequalitya*** < 0 is equivalent to
. 2F
ﬁ?ml < PO + (ngt - Pela:t) + ? (423)

There are two alternative situations:

e The inequality (4.23) is verified, we choose = r§{ and we can go on to the next step.

e The inequality (4.23) is false. According to PropositioB, 3" e —7¢ /o, This im-
plies that™¢ /(77" )* goes to zero whef¥’ goes to infinity. Thuspy** goes toP,,.;when7§ goes
to infinity, hence there exists, > 0 such that if¢ > a; thenp™*® < Py + (P2, — PL,,) + 2£.
Note that the second situation can be reproduced in the dawhmarts of the tree because the pressure

in one node only depends on what happens between this braddhearoot of the tree. Hence, the next

steps, modifying only downward branches in the tree, will modify the properties (pressure, flow or
radius) of the current branch. Therefore, reproducinggbieme in the next generations of the tree leads

to the existence of a real vectar= (a;);i=o,... n—1 such that if, for alli verifying k(i) = j, 7{ > a;,
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thenp*® < Py + (P2, —PL)+ % andaj*® < 0. Finally, note that no similar condition need to be
imposed to the last’V generation branches.

Hence, following this approach recursively, we obtain tsuit. O

Remark9. In Theorem 4.9, the real numbe(is]**™, a***), <<y are constructed in such a way that for
alliin{1,....2N8+1 —1}:

o < a; <o <0, (4.24)
with j = k(4).

In this study, the geometry of the tree is defined throughit&i state and more precisely through,
PL,., FE and its initial radiir®, thusr® is a data as much &s is. Moreover, the unconstrained radfiis a
consequence of those data, and in particular offhis choice of data has been driven by the method used
in [12,13] in order to measure sizes in lungs, actually mesmeants have been made in a state close to end
inspiration at rest regime. Indeed, it is the reason why wosh to impose hypothesis efin Theorem
4.9.

The previous Theorem leads to the definition of the functior r<(q).

Definition 4.10. Under the same assumptions as Theorem 4.9, we defirgthmappingr® as follows:

2N+t

et [0 T e
j=1
q — r%a)

such thalG(r*(q),q) = 0.

From now on, we will assume that the real numhefs™ < o"** < 0 are fixed and we will simply
noter = r<.

5. VISCOUS ENERGY MINIMIZATION

Let 7y be given and3? (r) be the resistance matrix associated to it by PropositiomAdbDefinition
4.6. We recall thaB™ (r) is a real symmetric matrix of siz2" x 2.

Let us denote by the viscous dissipated energy of the tree. It is a functiothefflux vectorq at
leaves, and it is the sum of the viscous dissipated energgdh branch of the tree (for the branghhis
loss of energy iséi(j?). It is easy to prove that the total viscous dissipated gnierthe tree is given by

Ep(q) ="'aB" (r)q

Assuming that the flowd going through the first generation branch (the root node er‘ttachea”
depending on which part of the human lung we consider) isngme want to minimizeZp over all fluxes
q € [0; <I>]2N such that

F(q)="'Jq =2,

where we recall thaf = (1,1, ..., 1).
Using Lagrange multipliers, at an extremuh we have

VEp(q°’) = AVF(q"),

hence, for all in R2", 2tq° BN (r)h = AtJh.
Therefore, we have:
2BN (r)q" = \J
thO — (I),
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whenceq” = 3(BY(r))~!J and® = 4 tJ(BY(r))~'J, this gives\ = 2&/*J(BY (r))~'J and

o (BN@)~J

R e A

Remarkl0. In particular, the optimal flovg is the image of an homogeneous distribution of pressures at
exits equal tad/(* JBY (r)~1J) (note that the ternt’ JBY (r)~1.J)~! represents the equivalent hydrody-
namic resistance of the whole tree).

Remarkll Note that if7y is homogeneous, see Remark/Ss an eigenvector oft andq” = ®/2V J.
Let us now define a flux optimization mapping as follows:

Definition 5.1. Let 7y be given and3” (r) be its resistance matrix (see Proposition 4.5), the mapping
is defined as follows:

oN+1_g

f+]0,400] (5.1)

with @ defined by:

Q: SHR) — RY
Al

A QW=

We recall that? = {q €]0; <I>[2N suchthatJq = ®}. Moreover, the proof of the fact tha™ (r)
belongs to the sef; (R) is given in Appendix C.1.

Proposition 5.2. The mapping satisfiesim(f) C Q.

Proof. Since!Jf(r) = @, it is enough to prove that(q); > 0, for alli € {0,...,2Y — 1}. This easily
follows from Lemma A.2. O

6. OPTIMIZATION FLUX FOR A DEFORMABLE TREE

In this section, we state our main result in Theorem 6.4. &the proof is technical, we postpone it
until Appendix C.

We consider an elastic dyadic tr&g with given radiir® andr®, we prove that under some assumptions
on oy (r,q), there exists an optimal fluy € 2 for the deformed tree of radiugq) given by Definition
4.10.

Proposition 6.1. Under the same assumptions as Theorem 4.9, there epists (2 such that
F(qr) = qr,
whereF' is defined by
F:Q — Q
(B (x(a)) "7

—® = for(q).
(BN (x(@) T (@

qQ — F(q)=

Proof. SinceIm(F) C © C Q andQ is a compact and convex set and becaklisie continuous, from
the Brouwer fixed point theorem, we deduce the existenag-oE Q such thatF(qr) = qr. Because
Im(F) C Q, it follows thatqy € Q. O
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Remarkl2. Recalling Remark 10, we know that optimal flow correspondsiémtical pressures at each
exit. Hence, it is also possible to search optimal pressueR of deformed tree exits through a fixed
point of the application

H(p) = (tJ(BN (r(BN(ro)_lpJ))) 71]) o

However, to obtain branch deformation it is necessary topamthe flow vectoy = B™ (ry)~!pJ and
complexity of both approaches are the same.

It is possible to obtain a better localization of the fixedrpej; using the fact that for each trég; there
existser,, > 0 such that/m(F') C Q. . This property is a consequence of the limitation of defdioma
range of radii. Actually, and because the fluxes are boungletl &nd positive, the tree branches cannot
collapse (zero radius) or infinitely dilate.

Proposition 6.2. Under the same assumptions as Theorem 4.9, there exjsts 0 such thatim(F') C
Q

ETN'

Proof. Let us define the applicatiom : @ —]0; ®[ such thatm(q) = min; q;. The applicationn is
continuous o) along withF on Q. Hence the applications o F is continuous on the compa@t Then
m o F reaches its minimum in Q and becausé'(q); > 0 for eachq € Q, n > 0. Takinger, = 71/2
leads to the result by definition, becausgy); > ez, for eachq € Q. O

Finally, the following result holds:

Proposition 6.3. Under the same assumptions as Theorem 4.9, the restriEggg of Fon{,  admits
N
aflowqgy € Q.. such thatF‘QETN (daf) = qy.

Proof. Using(2., inthe same way than proposition 6.1 leads to the result. O

According to Remark 6, we will user,, ase to define the different values q}‘""" andq;**.

The preceding result does not give uniqueness and can nashg @sed to build a fixed point. However
with stronger hypothesis, Picard’s theorem applies andearsed to numerically estimate the fixed point.
This leads to the following theorem. Note that its proof iggtechnical and can be found in the appendix
C.

Theorem 6.4. Assuming Theorem 4.9 hypothesis, there exists0 such that if® belongs tg0, 5[ then
the Picard fixed-point theorem applies fdron (2., . This leads to uniqueness of the fixed pgintof I
in Qer, and to convergence towarg- of the scheme:

9 =4 € Qer s Gni1 = Fqn)- (6.1)

7. NUMERICAL SIMULATIONS

7.1. Methodology

The simulations are applications of Theorem 6.4. They werfopmed with Matlab 7. The evaluations
of the functionq — r(q), defined byG(r(q),q) = 0 (Theorem 4.9), were obtained through a Newton
method. The numerical process uses the characteristicajaoat structure of this problem and calculates
most of the different variables (pressures, radii) fromttipeof the tree down to the lower part. Numerical
values for the different parameters were obtained from pmgsiology literature [1,4,8,10,12,13,15] and
will not be discussed here. Young’s modulus is assumed t@hstant along the generations. Although
this last hypothesis is not quite realistic, applying a mealoe to the whole tree seems a good compromise
knowing that mechanical properties of small bronchi arewslt known. Thus, we us& = 6250 Pa for
Young'’s modulus [8, 10] of each bronchi walls. The tree isiassd to have eleven generations and to be
of fractal structure: bronchi of one generation are homtathe bronchi of the previous generation with
a factorh = 0.82 [7,13, 14]. Parenchyma pressures have been fitted relativétachea velocities from
measures obtained in [4].
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To measure the global deformation of the structure, the nigdeformation of the branches or tree
deformation %) will be used. It is given by:

7.2. Convergence

To study the convergence speed of scheme 6.1, a local estimhdahe Lipschitz constant of the
applicationF’ has been calculated. Convergence velocity is given by tlewimg inequality, which holds
true for alln € N*:

n

— <
an qH2_ 1_k

To locally estimatek, the valueErr = in ((q,+1 — a.)/(q1 — 9o)) has been stored for each sequence
indexn. According to the inequalita,+1 — q.||l2 < £™||a1 — qol|2 going along with Picard theorem,
if convergence occurdyrr should be smaller than a line with negative slépé:) (k €]0, 1[) and hence
should be decreasing teco with n.

To illustrate the scheme convergence, we exhibit an exaoggtesponding to the tree described previ-
ously (section 7.1), but one of its third generation brasdseassumed to be partly collapsed (the radius
has been reduced to one third of its original value). The flod @ot pressure have been adjusted such
that the velocity in trachea corresponds to forced exminagind reachess m.s~! (remember that the
first generation of our tree corresponds to the sixth geioeraf the lung). The Young modulus has been
chosen to beZ = 1250 Pa (five times smaller than in the previous section). The resalle presented
on Figure 4. On the left pairr has been represented and is decreasing very fast. From itierical
results, the local Lipschitz constant is smaller tiie®d2. Hence for the sixth iteration, the inequality
llas —qllz < 1.3 x1077||q1 — qo||2 holds. The right part of Figure 4 shows the leaf flow profiletia tree
along the iterative process. Since the convergence istifestlifference between the initial profile (dashed
line) and the first iteration profile (dashed dotted linegigk. The sixth iteration (continuous line) is very
close to optimal flow.

The meari? deformation of the branches in this example id4©6%, with a larger value reached on a
leaf branch {7.9%) and smaller value on root branchd(8%). The dissipated viscous energy in the tree
with flow gg represents only3.6% of the dissipated energy with flog.

||Q1 —QO||2-

Convergence. x107 Optimal flow evolution during iterations.
0 T T 151
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FIGURE 4. Convergence of iterative schemg.1 = F(q,). Left: “convergence curve”
(In of relative error from one step to the next), this curve helpso bound the Lipschitz
constant ofF', which is smaller tha®.042 here, hence the convergence is fast. Right :
flow during iterative scheme, initial flow, is represented by the dashed line.

Note that as stated in Proposition C.2, reducing too muclpéinameter® (lower than223 Pa in this
particular case, to compare to t6250 Pq for the lung) or increasing too much the paramdidtrachea
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velocity larger tharv7 m.s~1) leads to non convergent schemes. Moreover, these twdtidssdepend
on each other, for instanceré m.s~! velocity in the trachea leads to a thresholdBwof 1087 Pa, while

E = 6250 Pa leads to a threshold on trachea velocity28f m.s—1).

7.3. Study of Equal Pressure Point (EPP)

The behavior of bronchial wall (constricted or dilated) &fided by the difference between pressure
increases in the bronchia and in the parenchyma (pleursspre). There are two scenarii:

¢ This difference is negative, this leads to bronchial dilata
e This difference is positive, this leads to bronchial canttin.

From the leaves of the tree to its root, the bronchial prespuidecreases with generations up to the
trachea, where it reaches atmospheric pressure (chosen0tintour model). In the case when pleural
pressure increase during expiration is lower than alvgoiessure increase, then both scenarii can happen
in different bronchi of the tree. This creates a dilatedaadn the lower part of the tree and a constricted
region in the higher part, as shown on Figure 5. The tramsitagion (which is more precisely a set of
generations in our model) is called tRgual Pressure Poinshortly namedEPP.

To track EPP, we have simulated a range of velocities in gacnd checked when both scenarii are
present, using the following property. The tree defornmai® directly linked to the presence of EPP:
deformation reaches its minima when EPP reaches in theTtég.is a natural consequence of its defini-
tion. Actually, pressure in the branches where EPP occuatsdguilibrium with parenchyma pressure and
these branches are not deformed. Thus, pressure in thelwtrarhes are the closest to equilibrium with
parenchyma than in any other configuration and the wholesuéfers the smallest deformations. Hence

we have used this criterion to detect EPP.

Tree deformation (constricted tree)
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FIGURE 5. Plots of tree deformations. The minimum point is used taliae the range
of velocities where EPP occurs. On the left: a fractal treelefen generationgi(=

0.82), on the right: the same fractal tree with a branch from tliel theneration being
partly collapsed (radius divided by three). Note the eftédhis collapse on EPP local-

ization.

Two tree deformations plots for a range of trachea velodtyelbeen drawn on Figure 5. The left plot
corresponds to a fractal tree of eleven generatios (0.82) and shows a minima around.57 m.s~!. The
right plot shows the consequence on the minima on a tree whiréhgeneration branch partly collapsed
(radius divided by three). The minima is then shifted to tighér velocity17.62 m.s~!. Hence the global
deformation can be linked to tree structure or defects dtiisrion could be used to check tree pathologies

due to geometrical changes.
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APPENDIXA. PROPERTIES OF MATRICESBY (r) € By

In this section, we give some properties of matrid¥ (r) given by definition 4.6 which will be useful in the
calculation of estimates on the eigenvalues and on the inverse of maiitege Section 7 and next Appendixes.

The first result is a direct consequence of the formulation (4.6) ofrthigicesB”™ together with the semi-definite
positive character ofY, 0 < k < N — 1, and of the diagonal matrix

]:?,21\1 0 0
0 Rynvyy O 0
0 0 0 Ron+1,

Proposition A.1. The matrixB” (r) is positive definite and its eigenvaluks, ..., \,~ _, satisfy:

min Ai > min(Ron, Ron 1, ..., Ront1_1),
i€{0,...,2N —1}

max )\7, S 2NR1 + 2N_1 maX(Rg, é5) + ...

+ maX(RQN, R2N+17 ey R2N+1_1).

The following result shows that the relatign= B”™ (r)q is invertible. Therefore, one can choose indifferently
pressures or fluxes at leaves to study the structure of the flow in theTtieénequality given in the following lemma
is needed in order to prove Proposition 5.2.

Lemma A.2. The matrixB™ (r) belongs toG L,~ (R) and
(BN(r)—lj)_ >0,vi € {0,...,2Y — 1}.
Proof. SinceB™ (r) is a positive definite matrix, it belongs &L, ~ (R.).

Let (BN (r))™'J = (Bo, ..., Bon _1). FromBY (r)(BY (r))~'J = J together with the definition 4.5 d8™ (r),
we easily deduce that

(BYe)BY @) 17) — (BY@)BY@)T)| = Rafo — Rsfh =0,
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hencesy 51 > 0 andfBp 81 = 0 if and only if 3o = 81 = 0. Similarly, we obtain thaBs; 82:;+1 > 0 andfz;52i+1 = 0
if and only Ifﬁgz = 52i+1 =0foralli e {0, ey 2N71 — 1}
Moreover, we also have

(BY @Y @) ~), - (B @ BYe) ), =
Rufo — RofB2 + Ra(Bo + A1) — Rs(B2 + Bs) = 0.

Using next thap3; = g‘j Bo andfBs = gj (B2, we obtain

- - Ry = - - Re =
(Rz + R4+ R75R4)60 = (Rs + Re + i 33)52,
hencesy 82 > 0 andfBp B2 = 0 if and only if 3o = B2 = 0. Similarly, we obtain thaBs; 82i+2 > 0 andBz; 82i+2 = 0
if and only if B2; = B2i42 = Oforalli € {0,...,28 1 — 2},
Hence, following this approach recursively, from

(BY @B @) ~) = (BYmBY @) ) =,

J
we deduce that all thé have the same sign and if one of them vanishes, so do all of the otheeslaffér case is
not possible sinc&” (r)*(Bo, ..., Bon _1) = J. Moreover fromBY (r)*(fo, ..., o~ ;) = J again, we deduce that
B: > 0. O

i

APPENDIXB. PROPERTIES OF PATH MATRICES

In this appendix, we give the definition and properties of a particularfseatix denoted byP,~+1_ ;. The results
describe here will be used for the estimates of Appendix C which aress@gein order to prove Theorem 6.4.

Definition B.1. LetP,~+1_; be the set of square matrices defined by:
Ponti_y = {P € GLy~n+1_4(R) such thatP is lower triangular and
Py =0if j ¢ To_i, i,j € {1,..,25 " — 1}}.
Examplel. The gradient matri¥q,, p7y (a7 ) of the applicatioryry, — pry (azry ) belongs taP,~.

Let us now establish some properties of matrices belonging to tle,set: _,. This set and its property will be
useful in the sequel to study the convergence speed of an iterativegsisee Appendix C.

Proposition B.2. Let A belongs toP,~—1_;, thenA™* belongs taP,n41_;.

Actually, (Pyn+1_4, X) is @ subgroup off Ly~ +1_; (R). Moreover the inverse of an element®f~ +1_, can be
obtained through an iterative process (it can be built column-wise, therbeginning of the column to the end):

Proposition B.3. Let A = (a;;) € Pyv+1_4 thenits inverseB = (b;;) € Pyn+1_ IS such that:

-1 . . .
bij = (a“) ( Z aikb;w) fij e Iy, i 75 7
ki

k€Tlg_;\p_;,
and
by = L oforie {1,.., 2N 1},
Qi
Proof. We easily see tha® belongs toP,~+1_; and thatAB = I,n+1_;. d

Now we obtain an upper bound for the coefficientsof' = (b;;) depending on boundary properties on the
coefficients of the matridX4 in Pynvi1_;. Let A = (ai;) be given inPynv11_;. We assume uniform boundedness
conditions:

Vi 75 j, |aij\ <« and — Qi > ﬂ > 0. (Bl)
First let us introduce the following real sequence:
{ ur =1/
Un+1 = % 22:1 Up
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Lemma B.4. This sequence can be rewritten for> 2:

un:<1—|—%> %

Proof. We haveu,+1 — u, = (a/B8)u, forn > 2, hence usingiz = /3 gives the result. a

Proposition B.5. Leti, 5 in {1,...,2Y "' — 1} be such thai > ;.
According to the branch numbering, this implies that the correspondingrgéions of the branch and j verify
k(2) > k(7). With this hypothesis, we have:

1bij| < Wk —k@)+1)

Proof. Leti,j bein{1,...,2Y"* — 1} such that > ;.
If IT;—.; = 0 thend;; = 0 and the inequality is true.
Now assumél,_.; # 0.
According to the definition 0f;; and the boundedness hypothesisxgn we can write ifi # j:

bul <5 32 Ibwil
pEIL; i, p#i
and of courseé;; < 1/0.
The important point is that the set &f; corresponds to the branches linking brapiasf generatiork(;) branch:
of generatiork(i). Hence there is exactly ondn the sum for each generation{&(;), k(j) +1, ..., k(¢) — 1} (recall
that we suppose # 7). Therefore, there are exacthfi) — k(j) terms in the sum. This also shows that the upper
bound ofb;; only depends ob,; which have smaller generations and consequently such that their indexesy
p<u.
Hence, we will use a recursive proof indexed by the difference bEtvgenerations (i) — k(j). Recall that we
assumdl;_,; # 0.
Then ranked induction hypothesis is : "#(i) — k(j) < nthenby; < uk@y—k()+1"-
Assume first(z) — k(j) = 0, this means = j and
1

|aii

[bii| = <—-=wu

R

This is true at rank.
Now assumék(z) — k(j) = n + 1 and assume true theranked induction hypothesis, then:

(0%
|bij| < 3 > |bm |-
mell(j—1i),m#i

But we recall that ifm is different from¢ and belongs to the sél;_.;, its associated generation is smaller than
hencek(m) — k(j) < k(i) — k(3) andk(m) — k(j) < n. Moreover suchn, (i.e. different fromi and belonging
to the sefll;_.;), cover each generations betwdgi) andk (i) — 1. Consequently for eaghin {k(5), ..., k(i) — 1}
there exists a unique:, in the sum such thdt(m,) = p. According to then ranked induction hypothesis we have:

bmypi| < Uk(my)— k() +1

Now putting this inb;;:

k(i)—1 k(i)—1
[0 e
|bij] < — Z |brm, 5| < 3 Z Uk () —k(5)+1
p=k(J) p=k(J)
which leads to:
o k(i) —k(j) o !
|bij|§B Z UPZBZUPZUnJﬂ

p=1 p=1

This shows the: + 1 ranked induction hypothesis and the result is true for eweeyN™. d

Now if the tree hasV generations and because— w,, is increasing, we have:
o N—-2 o . .
bl < (14+5) 3 forizj

|bii| < 5
and denoting by||.|||2 the matrix norm subordinate to the euclidean norm (i.eMif= (m;;) then|||M]|]2 =

MX .
SUPX#£0 HHXH!Q ) we have:



TITLE WILL BE SET BY THE PUBLISHER 21

Proposition B.6. Let A belong toP,~+1_4, then

A7 ]]2 < @Y = 1) max | = (1 * a)m 5
- 32 B8 B

APPENDIXC. ITERATIVE PROCESS

In Section 6, we found a fixed point df. However, we did not prove uniqueness nor supplied a constructive
method. In this part, we prove that under more restrictive hypothesiRittard fixed point theorem can be applied.
Here, we assume that Theorem 4.9 is verified. Let us begin with thegwe and convergence speed of the iteration
scheme defined by:

'€, q =F("), ¢ =F(q'),.. (C.1)
To do so, we look for a constafit< C' < 1 such that
IF(q®) — F(a")l]2 < Clla® — a'|]2.

More precisely, we will prove tha¥ o F' is bounded and that its bounds can be adjusted thanks to models pasameter
in order to apply Picard Theorem.

First, recalling that” = f or, with f given by (5.1), from the chain rule together witl{r, q) = 0, it follows that:

VaF(q) = Vi f(r(q)).Var(q) = = Vi f(r(q))- [V:G(r(q),q)] " V4G (r(a),q)] - (C.2)
The expression oV 4 F' leads us to study the three gradients of the right-hand side of equatign (C.2

C.1. Gradients

In this part, we calculate the three gradients of the right-hand side of.(C.2)

C.1.1. Calculation of V.G
First, we recall that for all € {1,...,2¥ 1 —1}:
) 307
Pi = Proot + . Z ?qj» (C3)
jE€Mg—; J

hence(r,q) — «i(r, q), given by (4.16), has zero derivativ%%;é (r,q) if j ¢ IIo—; orj = 4. Furthermore, we have:

Proposition C.1. The matrixV.G is triangular. It belongs t&7 L,~+1_; (R) and is given by:

ai(;r(;q) _ 3?7511”7: if j =4
0G; o S0cier; o S
87“j (I‘, q) = - E,;lej;? q; |f] € Ilo—i, J 7é ?
0 elsewhere.
Proof. The fact that2%: (r, q) # 0 comes from the assumptien (r, q) < 0 together withg; > 0. O
Or.,

Remarkl3. The matrixV.G is a sparse matrix which has at m@iizl_l (k 4 1)2* non vanishing terms (it has at
most(k + 1)2* non vanishing terms on link). Moreover, it belongs to the s@,~+1 _, studied in Appendix B.

C.1.2. Calculation of V4G
First, recall that for allj in {1,..., 2"+ — 1}:

(ij = Z qk,

kstjelly Ny
hence:
G _ [ 1 ifjely_onyy
dqg. | 0 else
Obviously, from (C.3), we deduce that:
opi 6CTS OG; 6CTS$
S = Y, e= Y = (C.4)
£l jE€Mo_; I KL JEMgiNg_y I
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Moreover, recalling the expression Gf we have
Iqr. - Oqr 7¢ F? oqr’

hence, using the expression®f, we obtain

0G; 1507 5l m 0
e = B > AR Tt (C.5)

JEM,_ 4Nk "i
C.1.3. Calculation ofV, f

Note thatf can be decomposed gi¢r) = Q o B (r) with

AT .

and B (r) being the matrix associated to a tre with anr distribution of radii as in Proposition 4.5.

A simple calculation gives the differential 6f:

FJAT'HATY ., AT'HAT?
The differential of the application — B™ (r) is easy to calculate, because every coefficignt) of B (r) is

a sum of resistance termig, = 6Cr¢ /rp with k in a subsetV; ; of {1,...,2Y*! — 1}. N, ; has the property that
if k,1 € N, ;, with k # [, theng(k) # g(I) (hence there is a maximum o&f terms, reached on diagonal), see

Proposition 4.5 and Definition 4.6. Then, we can write for(all) in {1,...,2¥ ! —1}:

6CTy,
BY¥(r)i;= Y =i

k Tk
EN;
and consequently:
—24Crk
(V.BYwA) = > e (C.7)
2,] keNi,j k

Finally, the chain rule yields:
Ve f(r).h = DaQ(B" (r)).[VeB" (r).h)].

C.2. Estimates
In this part we give the estimates of the three gradients of the right-haadseatuation C.2.

C.2.1. Estimates oV .G

Recalling the definition o¥ .G, we know that it belongs t®,~+1_,, hence we can apply Proposition B.6 and we
can give estimates am and; given by (B.1). For simplicity, we will now denoté¢ = (a;;) the matrixV.G.

Estimate ofa:

We assume in this paragraph ttige ;. We recall that:

300757 :
——qj if j ath, ..
Ef'f*f';’ q] ] E p h)gn

a;; =0 else

QAij = —

Hence:
00T 7

k(i) ljqu
Efg(f'dmi,n)s g9(d) >

i\ g(5)

laij| <

and

~SeEsmax
o= max 6OCT]Tk(1> qmaz
i€{1,..,2N 1}, jepato—i),jzi 5 (Fpi))® 99 -

(C.8)

Estimate of3:
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According to the previous definition:
ai(r,q)  3nq(i)
7 7t

Qi3 =

where we recall that
5((P0 — P + (P2 — Pela:t)) andy — 15C
2F =5

Within our hypothesis (which are the same as Theorem 4.9) and recalizgr@m 4.9 together with Remark 9, for all
iin {1,..2¥*! — 1}, we have

ai:—l—

oSy Bnaly
e —
T (Tk((il)x)
According to the data of our model, the right-hand side of the previousialityis always strictly positive, hence
we can conclude that:

—ii > —

amzila: 3 qmzn
B= min — kO YELIO!

. e ~ 4
ie{1,..2N -1} TS (TQZ?)Z)

> 0. (C.9)

Then, along with Proposition B.6, this yields that

N-—-2
—1 N « « 1
(¥, Gr,a) ™l < 2" max {6 (1+%) ,5} ,
with o andg given by (C.8) and (C.9).
C.2.2. Estimate oV 4G

From equation (C.5), for aflin {1, ...,2V " — 1} andk € {0, ...,2V '}, it follows that:

0G; 15075 75

| z‘ < ﬁ() 2 : J 1+ n == My

gy, Er : (Fmin) (Fnaw)
JEM(O0—[L)NII(0—k) \" 9(5) k(i)

Next, we know that:

1IVeG(a)ll2 < 2% (2" -1 15 s

max
(i,k)e{1,....2N+1 -1} x{0,....2N -1} ' Ogx,

hence,

V,G < NN+t _q ma M; 5.
VG (Ill2 <27( )(WE{LA“’QNH_’f}x{owﬂN_l} ok

C.2.3. Estimate ofV,. f

Let us noted = B™ (r) and letsp(A) be the set of the eigenvalues.af Here, we will use the spectral properties
of the matrixA. From Proposition A.1 together with the trace dfd||> properties we know that:

if A\ € sp(A)theni > llkr(rgr:lN R;. (C.10)

Amin = min(sp(A)) verifiesAmin < tr(A)/2". (C.11)
Amaz = max(sp(A)) verifiestr(A)/2Y < Anas < tr(A). (C.12)
WAz = 1/Amin- (C.13)
7 = 2" (C.14)

According to the formula oiV,.f given in Section C.1.3, we need to estimate the following tefthd ~'.J,
DAQ(A).H andA~" with correct norms.

Estimate oftJA~LJ:

SinceA™! is a symmetric positive definite matrix (becausés, see Proposition A.1), we know that it is coercive
and that its coercive constant is its smallest eigenvalue, i.e.:

t -1 . 1 2
- Agl;?A) <)\ 17112

Moreover,
oN+1_y

tr(d)= > 2VIOR,
j=1
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. ~ GCT;’ )
and recalling thak; < W we have:
g

2N7k

N

tT(A) S 602 T=minN4 Z 7’; .
pofl N Ay

Let us callm; (7x) the right-hand side term of the previous inequality divide@By thentr(A) < 2Nm4 (),
wherem(7x) only depends on the parameters of the model (which are the uncoestraitius, the pressurés..,
the root pressure?y, E and®). Then, using (C.12), we obtain:
t -1 1 2 2"
JATT 2 <15 > 55

74(14) m Zml(TN)il- (C-15)

Estimate of DAQ(A).H:

Thanks to the previous inequality, and from Section C.1.3 we have:
1D4Q(A)-Hlllz < (2¥ma (Tw)II1A 113 + 1A [13) o (Ta) 02" H] | (C.16)
Next, takingH = V., A.h in (C.16), and recalling equation (C.7) we obtain an upper bound:

N 5
1
[|VrA.h||2 < oN max Ny laij| < 2N24c||re||oo\|h|\2 g <7> .
g

i,5€{1,...,2 gt rman

Let us setms(7n) = 27 24c¢||re|| oo Zgzl 1/(77"™)®, which only depends on the parameters of the model. We
have:
[[VrA.h|l2 < mo(Tn)||R]]2.
Estimate of A~

Using (C.10) and (C.13), we deduce that

_ 1 ~mazx\4
A7 ]2 < — S C i
ming py—ny Ri ~ 6emingp=n(ré)

=m3(In), (C17)
andms(7Zx) only depends on the parameters of the model.
Estimate of V.. f:

Using previous estimates (C.15— C.17), we deduce that:
Ve f(r).Rlll2 [[DAQ(VA.R)||]2 (C.18)
2% (2Nm1(TN)m3(TN) n l)ml(TN)zmg(TN)mg(TN)2<I>||h\|2.

IN

C.2.4. Final estimate
Combining all results (C.15— C.18) from this section allows us to get aendpgund of ||V, F(¢)]||2:
VaF(q)-h = =V f(x(a)). [V:G(r(a),q)] " .VqG(r(a),a).h] -
Hence there exists a constaiZ, ®) such that for alh € Rr2", [IVaF(q).hll2 < C(Tn, ®)P||h||2, therefore:
IVaF(a)lllz < C(In, ).
This leads to the proof of the Theorem 6.4, recalled below:

Theorem C.2. / 6.4There existg > 0 such that if® belongs td0, »[ then the Picard fixed-point theorem applies for
Fon QETN. This leads to uniqueness of the fixed pqinof F' in QeTN and to convergence of scheme C.1 towgid

Proof. We just need to prove thatf is a strictly positive real number, then for dllin [0, U], there existd((7n) > 0
such that

C(7In,®) < K(7n).
This property is a consequence of the fact tﬁé’t" > 0 andg;**® < ¥ for all @ in [0, ¥] and that the estimates from

this chapter can be obtain in a similar way but independenttly,afith q;m" = 0andg;" " = V. g

Remarkl4. Inthe same way, it can be shown there exists;, > 0 such that ifE > FE,,;, then the Picard Theorem
applies onF'.
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Remarkl5. The Theorem C.2 and the Remark 14 prove that the Picard Theoremdpsities for small deformations,
which is consistent with the linear elasticity model used for bronchial wédird@ation.



