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Abstract
Mucociliary clearance and cough are the two main natural mucus draining methods in the
bronchial tree. If they are affected by a pathology, they can become insufficient or even
ineffective, then therapeutic draining of mucus plays a critical role to keep mucus levels in the
lungs acceptable. The manipulations of physical therapists are known to be very efficient
clinically but they are mostly empirical since the biophysical mechanisms involved in these
manipulations have never been studied. We develop in this work a model of mucus clearance
in idealized rigid human bronchial trees and focus our study on the interaction between (1) tree
geometry, (2) mucus physical properties and (3) amplitude of flow rate in the tree. The mucus
is considered as a Bingham fluid (gel-like) which is moved upward in the tree thanks to its
viscous interaction with air flow. Our studies point out the important roles played both by the
geometry and by the physical properties of mucus (yield stress and viscosity). More
particularly, the yield stress has to be overcome to make mucus flow. Air flow rate and yield
stress determine the maximal possible mucus thickness in each branch of the tree at
equilibrium. This forms a specific distribution of mucus in the tree whose characteristics are
strongly related to the multi-scaled structure of the tree. The behavior of any mucus
distribution is then dependent on this distribution. Finally, our results indicate that increasing
air flow rates ought to be more efficient to drain mucus out of the bronchial tree while
minimizing patient discomfort.

Introduction

The wall of the conductive part of the respiratory tract is
lined up with an epithelium which plays a protective role in
absorbing, filtering or excreting different types of molecules.
The airway surface liquid layered on the epithelium consists
in a thin sol layer (periciliary liquid layer) and a mucus
layer. As part of the epithelium, the goblet cells secrete the
layer of mucus that is the first barrier of protection against

external aggressions since it captures the aero-contaminers
[1, 2]. Mucus is a heterogeneous fluid that consists mainly
of water and biopolymer [2]. It is moved upward toward the
oropharyngeal bifurcation thanks to the motion of the cilia.
This phenomenon is called the mucociliary clearance [4–6] and
has already been the subject of micro-scale models in the past
[2, 7, 8]. Cilia stand on the ciliated cells which are the most
frequent cells in the bronchia epithelium [3]. Mucus is not
excreted homogeneously along the bronchial tree, because the
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density of goblet cells decreases from the proximal parts to the
distal parts. In particular, they are not present in the terminal
bronchioles (from the 16th generation) and consequently in
the alveoli [9, 10].

Under pathological conditions, mucus characteristics and
mucociliary clearance efficiency can be altered. For example
ciliary movement can become ineffective, for instance with
a modification of mucus viscosity or with cilia degradation;
this induces mucus stasis that often leads to infections [3].
Cough has also a role to play in mucus clearing [11–13] and
protects from hypersecretion by preserving normal air flow
rates, but its effects are efficient only for relatively healthy
adults. Actually, cough has a low efficiency for aged adults
or adults with strong chronic respiratory failures. Cough is
immature for small children, the proportion of children able
to spontaneously evacuate mucus increases with age but is
smaller than 10% at the age of six and does not reach 12%
at twelve [14]. Actually, the proportion of goblet cells in
children is proportionally larger than for adults but bronchi
diameters are smaller and the muscular command remains
weak. Cough is less efficient than for adults, and bronchial
obstructions often happens and induce serious respiratory
failures.

In normal condition, the regime of ventilation plays an
important role on mucus characteristics and clearance [15].
Airflow stresses can produce transepithelial fluid flow and
improve mucus hydration, thus changing its viscosity and
yield stress. Airflow stresses can also alter mucociliary
clearance, for example clearance efficiency is decreased during
sleep and increased during exercise. Hence, ventilation
rate plays an important role on mucus evacuation. This
observation has greatly influenced the therapeutic strategies
of physical therapists since it is the base of their technique of
expiratory flow modulation that ought to favor expectoration
[16]. Although the efficiency of these techniques has been
validated clinically for years, as of today they lack a true
scientific insight from a biophysical point of view. Indeed
interesting studies have been made in tube-like geometries
[17–19] or with a few generations [20]. But these studies did
not take into account the multi-scaled structure of the lungs
which plays an important role in the inner fluid dynamics
[21] and must largely interfere with mucus distribution and
clearance. Moreover, to our knowledge, no study has ever tried
to model the consequences of the manipulation of physical
therapists.

Hence, the model we build in this work is a first step
toward a global model of mucus draining in the lungs. We take
into account some of the most important features of the system:
the geometry, the mucus properties and the amplitudes of air
flux rate. In the following, we will first describe the geometry
of our model and the air and mucus dynamics modeling.
Next, we describe the analytical and numerical methods used
to solve the physical equations. Then we will study mucus
distribution in the tree when it is at equilibrium with air flow
and when it is moved up the generations during the transitory
regime.

Modeling

Geometry

Lung has about twenty-four generations of bronchi that can
be divided into two distinctive parts: a conductive region
(eighteen first generations), where pulmonary air circulates
with a quasi unaffected gas composition, and an exchange
region called the acinus that corresponds to the last six
generations and where exchanges with blood take place. Most
of the alveoli are located in the subacinus that corresponds to
the last four generations [22]. Moreover, while diameters are
decreasing regularly in the conductive region, they stay almost
constant in the acinus [22]. The alveoli contribute about 90%
of the total lung volume, and most of the change of lung volume
during ventilation is due to the change of volume of the alveoli
[22]. Thus, we can consider that air circulation is induced by
the change of volume of the 300 millions of alveoli in the last
generations.

Very little mucus is present in the deepest bronchi
[9, 10] that consist mostly in an assemblage of alveoli. This
indicates that mucus draining occurs only from generation zero
to generation seventeen. Consequently, the contribution of the
deepest part of the lungs to the model was limited to their role
on the flow in the tree.

The models of the lungs used in this work assume that the
lung is a cascade of cylinders associated in a dichotomous
tree of N generations (typically N = 18, numbered
from 0 to 17). It also assumes that branches bifurcate
symmetrically. Because all branches of a given generation
are identical, it is sufficient by symmetry to consider only one
branch at each generation with an adequate flow rate. We call
rb,i the radius of a bronchi in the ith generation and lb,i its
length. We will neglect inertial effects in both air flow and
liquid flow because they are mostly present only in the largest
bronchi [23], consequently the symmetric branching induces
that air flow is divided by two at each bifurcation.

At some point, a more precise description of the tree
geometry is needed to reach further predictions. In this case,
we assume that the tree geometry obeys a scaling law, which
is a typical assumption for lung modeling [21]. Each time
a branch is bifurcating, the radius and length of its daughter
branches are reduced by a constant homothetic ratio h < 1.
Consequently, the diameters and length of the branches only
depend on their generation index and on the sizes of the first
generation branch. Thus, if the branch of the first generation
(trachea) has a radius rb,0 and a length lb,0, then the radius of
a branch of the ith generation is rb,i = rb,0 hi and its length
is lb,i = lb,0 hi . Such a tree is known to be a good first
approximation model for the lungs [21, 24–26].

Air and mucus mechanics in a bronchus

We assume that air and mucus velocities are axi-symmetric
in all the bronchi. Each bronchi is framed with cylindrical
coordinates (r,θ ,z) where (z) axis is the axis of the cylinder
and (r,θ ) parameterize the circular section of the bronchi.
Although it is known that air Reynolds number can be up
to 1000 at rest in the trachea [21, 23], air and mucus inertia is
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Figure 1. Bronchi i is assumed axi-symmetric and a layer of mucus stands on its wall. Mucus can either be divided into two layers (one
liquid and one solid) or be fully solid or be fully liquid. Its state depends on the relative localization of the bronchi radius rb,i , the air/mucus
interface radius ra,i and the radius of solid/liquid interface of mucus (which can be virtual if all the mucus is solid or liquid). In the case of
the existence of a solid and a liquid layer of mucus, the liquid part is always in the region with higher shear rates, i.e. closer to the bronchia
wall.

neglected in our model for the sake of simplicity. Because of
axi-symmetry and fully developed flow hypotheses, the fluids
velocities have only a z component and depend only on the
radial r coordinate.

In each bronchus, the thickness of the layer of mucus is
assumed constant (independent of z and θ ). The geometry and
the different radii involved are depicted in figure 1. We recall
that rb,i is the radius of a bronchi of the ith generation and lb,i

is its length. The radius ra,i is the radius of the air lumen area
of the bronchi or of the position of the air/mucus interface
(the thickness of mucus is rb,i–ra,i). The virtual tree whose
branches diameter are ra,i is called the effective tree, it is the
tree that contains air. The radius r0,i is the radius that separates
the liquid phase of mucus and the solid phase of mucus (see
below), r0,i can be virtual if it is not in the range [ra,i , rb,i].

In a bronchus, the general equations of mechanics of an
incompressible fluid in permanent regime and zero Reynolds
number (no inertia) are

div(�) = 0 and div(V ) = 0, (1)

where � is the tensor of the inner stress of the fluid and V its
velocity. The inner stresses consist in the sum of the pressure
stress (tensor –pI) and of the viscous stress. Since we assume
that the velocity depends only on r and has only a component
v along z, the sole non-zero viscous stress component is
�zr = �rz and corresponds to a shear stress. Under these
hypotheses, equation (1) shows that pressure depends only
on the z coordinate and in a linear way, consequently Ci =
∂p/∂z is a constant in each bronchus of generation i. Finally,
equation (1) can be reduced to

−1

r

∂

∂r
(r�zr) +

∂p

∂z
= 0.

By integration of this last equation between 0 and r, it
becomes (denoting Ci = ∂p/∂z in a bronchus of generation i)

�zr = Cir

2
. (2)

Now it is necessary to determine the tensor of the viscous
stress �zr depending on the fluid considered. Air is a
Newtonian fluid with viscosity μa; its viscous shear stress
�zr is

�zr = μa∂v/∂r (air, for radii r such that 0 � r � ra,i).

(3)

We will assume that mucus is a non-Newtonian Bingham
fluid. This hypothesis is a well-known approximation of the
physical behavior of mucus which behaves like a gel for low
range of shear stress [7, 27, 28]. Such a fluid behaves like a
solid if shear stress is smaller than a threshold value σ 0 (yield
stress) and becomes a fluid with viscosity μm if the shear stress
is larger than this threshold (see figure 2). Thus, Bingham fluid
is liquid when �zr > σ 0, and its viscous shear stress �zr as a
fluid is

�zr = σ0 + μm∂v/∂r

(liquid mucus, for radii r such that r0,i � r � rb,i). (4a)

Bingham fluid is solid when �zr � σ 0 and being solid
implies that all its points are moving at the same velocity, i.e.

∂v/∂r = 0

(solid mucus, for radii r such that ra,i � r � r0,i ). (4b)

The yield stress σ 0 represents a fundamental parameter
from a physiological point of view: if the viscous forces per
unit of area σ are below this value, no more mucus flow can
be induced. Equation (2) shows that a radius threshold can be
associated with the shear stress threshold, this radius is referred
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Figure 2. Example of a Bingham fluid model. When the shear
stress σ is too small, Bingham fluid behaves like a solid and remains
motionless (shear rate or velocity gradient γ̇ = ∂v/∂r = 0), but
when shear stress reaches the yield stress σ 0 (here 2 Pa for normal
case and 4 Pa for pathologic case), Bingham fluid starts to flow and
its shear rate γ̇ depends linearly of the shear stress. In this example,
the pathological case viscosity is five times larger than the normal
case viscosity (0.1 Pa s). Thus, the pathological case needs more
shear stress than the normal case to reach the same value of shear
rate.

to by r0,i in the bronchus i; it is equal to |2σ 0/Ci |. When r0,i

is larger than rb,i , the whole mucus layer remains solid and
mucus is not flowing; in contrast, when r0,i is smaller than ra,i ,
the whole mucus layer is liquid and is flowing. When r0,i is
larger than ra,i but smaller than rb,i , the mucus layer is divided
in two sub-layers: the first sub-layer, closest to the branch
wall, is liquid and is flowing; the second sub-layer is solid and
is gliding on the first sub-layer. The different situations are
depicted in figure 1.

The interaction between air and mucus occurs at their
interface, where shear stress and velocity are continuous
between air and mucus. Finally, we can estimate boundary
conditions for mucus velocity on bronchus wall, at the interface
between mucus and the cilia layer. Boundary cilia layer
velocities have been reported in the literature to be about
10 μm s−1 [8]; however, cilia excitation is known to depend
on the position in the bronchial tree and on the regime of
ventilation [5, 6]. Practically, this velocity remains very small
comparatively to the velocities implied by air flow and can
thus be set to zero in our model.

In order to solve these equations in a bronchus of
generation i, we have to determine Ci = ∂p/∂z and the
thickness of mucus in the bronchus. These quantities are
determined in the next section thanks to flow conservation of
air and mucus in the full tree.

Flows conservation of mucus and air in the tree structure

In the preceding section, we have written the equations for air
and mucus that define their velocity fields in a bronchus as
soon as the pressure drop per unit length and the thickness of
mucus in the bronchus are known. To go on, pressure drops

per unit length and mucus thicknesses have to be calculated
in each bronchus. Both are determined by air and mucus flow
conservation in the tree bifurcations.

Pressure drops per unit length. Pressure drops are not easily
measured in the lungs and cannot be used directly in our model.
We choose to work with total air flow in the tree instead. Total
air flow �A corresponds to the amount of air that gets out of
the mouth each second. This quantity is used on a daily basis
for diagnostics by practitioners and thus is easily accessible.

In a bifurcation of our model, air flow in a daughter
branch is half the air flow in the mother branch because of
the branching symmetry and air flow conservation. So the
knowledge of total air flow �A (at mouth level) is sufficient to
determine the air flow �A,i in each bronchus of generation i
in the tree:

�A,i = �A

2i−1
. (5a)

The fluid equations (2)–(4a) and (4b) show that we have
a one to one correspondence between pressure drop per unit
length and air flow in a bronchus; thus, the knowledge of air
flow in a bronchus is sufficient to determine the pressure drop
per unit length Ci in that bronchus, as soon as we know mucus
thickness in that bronchus:

Ci = F(�A,i, ra,i). (5b)

The function F has an analytical expression (see
appendix).

Mucus thicknesses. The thickness of mucus in a bronchus
of generation i is determined by the radius of air lumen area
ra,i since mucus thickness is equal to rb,i–ra,i (see figure 1).
The air lumen area radii in the tree (ra,i)i = 1, ... ,N have to be
determined from mucus flow conservation in the tree. Under
the influence of airflow, mucus is motioned in bronchi and its
thicknesses evolve with time following a transitory dynamics
we will study. Each ra,i is thus a function of time. The volume
of the mucus in a bronchus of generation i is equal to

V (i)
m (ra,i) = π

(
r2
b,i − r2

a,i

)
lb,i . (6a)

The variation of the volume of mucus per unit time in a
bronchus of generation i is equal to the balance of the flow of
mucus that gets in and out of the bronchus. The mucus that
gets in is the mucus that gets out of its two daughter branches
(whose generation is i + 1). We call Q

(k)
out(ra,k) the flow of

mucus that gets out of a bronchus of generation k, this flow is
a function of the radius of the air lumen area in that generation
ra,k . Then

dV (i)
m (ra,i)

dt
= −2π lb,i ra,i

dra,i

dt

= −Q
(i)
out(ra,i) + 2.Q

(i+1)
out (ra,i+1). (6b)

The flow of mucus in a bronchus of the ith generation is
calculated by integration of the z-component of its velocity
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vi(r) between the radii ra,i and rb,i (where mucus stands, see
figure 1), i.e.

Q
(i)
out(ra,i) = 2π

∫ rb,i

ra,i

vi(r)r dr. (6c)

The velocity vi is calculated from the fluid equations (2)–(4a)
and (4b). Although vi is a function of ra,i , this is not shown in
the equation to ease reading. The flow of mucus that gets out
of the tree is represented by Q

(0)
out. No mucus comes out of the

acini, thus Q
(18)
out = 0.

Finally, equations (6a)–(6c) lead to a set of N equations
(one for each generation) which determines all ra,i and
consequently all mucus thicknesses in the tree:

dra,i

dt
= Q

(i)
out(ra,i) − 2 · Q

(i+1)
out (ra,i)

2π lb,i ra,i

(7a)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩Q

(i)
out(ra,i) = 2π

∫ rb,i

ra,i

vi(r)r dr. (7b)

Equation solutions

For each bronchus, we need to solve the system of equations
(2), (3), (4a) and (4b), (5a) and (5b) and (7a) and (7b) to find
the air lumen area radii ra,i that gives mucus distributions in
the tree. These equations stand for generation i and are all
coupled together. Moreover, generations are also coupled two
by two in equation (7a): the mucus that gets out of generation
i + 1 enters generation i.

Mucus dynamics behavior. We study how an initial
distribution of mucus thicknesses in the tree evolves with
time when it is submitted to a given airflow at mouth level.
The system of equations (2), (3), (4a) and (4b), (5a) and
(5b) and (7a) and (7b) is a system of differential equations
in which the unknown is the time dependent function ra,i(t).
An initial condition at t = 0 is needed to solve the time-
dependant equations; we assume that bronchi are initially
almost completely filled with mucus: ra,i(t = 0) = 0.1 rb,i .
A given total air flow rate has also to be provided and can
be time-dependent. To solve the system, we built a numeric
function that evaluates the right-hand side of equation (7a) for
any ra,i given, then we integrated the system of differential
equations with a Runge Kutta 45 method (Matlab function
ode45).

Equilibrium states of mucus layers. Time-independent
mucus distributions are temporal equilibriums of mucus
layers thicknesses. These distributions correspond to limit-
distributions reached with the dynamic case when mucus is
submitted to a constant airflow for a relative long time. When
mucus has reached this state, it cannot be moved anymore
except by an increasing of the amount of airflow. To compute
these equilibriums, we used the same equations (2), (3), (4a)
and (4b), (5a) and (5b) and (7a) and (7b) but with ra,i

independent of time, i.e. with dra,i/dt = 0. In this case,
equation (7a) states that the flow of mucus that enters the

bronchus and the flow of mucus that gets out the bronchus are
equal:

− Q
(i)
out(ra,i) + 2.Q

(i+1)
out (ra,i) = 0.

No mucus is coming from the most distal (deeper)
branches (Q(18)

out = 0), so the previous equation is equivalent
to

Q
(i)
out(ra,i) = 0. (8)

This means either that there is no mucus layer at all in
the bronchi or that the entire mucus layer remains solid. The
first situation corresponds to the air lumen area filling all the
bronchus section (ra,i = rb,i). In the second situation, shear
stress in the mucus layer is always smaller than the shear
stress threshold σ 0, and the (virtual) interface between solid
and liquid mucus is outside the bronchus, i.e. r0,i � rb,i . In
both case, the bronchi mucus thicknesses are not any more
coupled in the equations.

If the air flow rate in a bronchus is given, there is not
a unique mucus layer at equilibrium in that bronchus. If
we consider a mucus layer which is at equilibrium with an
air flow in a bronchus, then any smaller thickness of mucus
corresponds to a wider air lumen, i.e. to lower shear stresses
in the bronchus. Since the shear stress has to overcome the
shear stress threshold σ 0 to make mucus flow, any layer with
smaller thickness is also at equilibrium. If the air flow rate in
a bronchus is given, the thickness of its mucus layer cannot
however increase indefinitely without breaking the equilibrium
with air flow rate. This reasoning defines a (unique) maximal
thickness for the mucus layer in a bronchus given an air flow
rate inside that bronchus. The saturated equilibrium in the tree
corresponds to the situation where all the tree branches have a
mucus layer whose thickness is maximal relatively to the air
flow rate inside them. Because air flow rates divide in two at
each bifurcation and because bronchi sizes change from one
generation to the next, the distribution of the maximal mucus
thicknesses in the tree is strongly correlated to the multi-scale
structure of the tree as it will be emphasized by the analytical
study in the next section (see equation (11)).

To find the saturated equilibrium of mucus in the tree, we
solved the set of equations (2), (3), (4a) and (4b), (5a) and
(5b) and (8) relatively to ra,i (one equation per bronchus i). We
studied the equilibrium case with analytical tools whenever it
was possible. When it was not, we used a numerical method
based on Newton method (Matlab function fsolve). We were
careful that the mucus thicknesses found numerically were
truly maximal. To do that verification, we increased slightly
the mucus layer thicknesses found numerically for saturated
equilibrium and checked that the new distribution was not at
equilibrium with airflow.

Results

The parameters needed by our model were chosen in the range
given by the physiology. Most particularly, our model of
mucus is controlled (i) by the yield stress and (ii) by the
viscosity of the mucus when yield stress has been reached.
In our simulations, we chose numeric values for viscosity
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and yield stress which can be roughly considered as healthy
physiological values [29, 30], although a lot of variation is
observed amongst non-pathological individuals. Data for
healthy and cystic fibrosis patient in [29] give a yield stress
ranging from 2 Pa for healthy individuals up to 20 Pa for non-
healthy individuals. Hence, we used a yield stress of 2 Pa.
Similarly, data for viscosity found in the literature range from
0.01 to 2 Pa s, and for healthy individuals the value μm =
0.1 Pa s shows up as a reasonable estimation [29, 30]. Higher
viscosities can be encountered, up to 100 Pa s but such high
values induce a stagnation of the mucus for physiological air
flows; thus, they will not be used [7, 30].

In order to understand better mucus behavior in a tree
structure, we started first with the study of the saturated
equilibrium of mucus, i.e. when the mucus layers are at
equilibrium with air flows in the whole tree. That situation
helps to characterize and understand the dynamics of the
mucus, studied in a second step.

Saturated equilibrium of mucus

General results. In this section, we work with a dichotomous
tree with N + 1 generations without no hypotheses on the
size of its branches. A total air flow rate �A,0 is given at
tree root (mouth level). Our goal is to study the saturated
equilibrium of mucus in the tree. The saturated equilibrium
of mucus in the tree is reached when mucus and air flow rates
are at equilibrium in all the branches of the tree and when the
thickness of the mucus layers is maximal (i.e. a slight increase
of mucus quantity breaks the equilibrium).

Distributions of mucus that are at equilibrium with air
flows in the tree correspond to situations where mucus flows
are zero in each branch (equations (8)). At branch level, this
happens either when there is no mucus inside the branch (ra,i =
rb,i , see figure 1) or when all the mucus in the branch remains
solid (shear stress in the mucus layer is everywhere smaller
than σ 0, i.e. r0,i � rb,i , see figure 1). Actually, each branch i
is able to sustain a maximum unmoving quantity of mucus for
a given air flow rate �A,i . At equilibrium there is no mucus
flow and when the thickness of the mucus layer increases while
air flow remains constant, the shear stresses increase. Shear
stresses can increase and keep mucus at equilibrium as long as
σ � σ 0 in the mucus layer. The maximum quantity of mucus
in a branch is thus determined when the maximum shear stress
in mucus layer, reached on the bronchi wall (for r = rb,i),
is equal to σ 0: equation (2) gives then the equality |Ci | =
2σ 0/rb,i . Air flow in such a branch is then �A,i = − πCi

8μA
ra,i

4

and we can calculate the value of the corresponding radius
of air lumen area by combining and integrating equations (2)

and (3): ra,i = ∣∣ 4μA

πσ0
�A,irb,i

∣∣ 1
4 . Since the branch i belongs

to the ith generation of a dichotomical tree, flow conservation
implies that �A,i = �A,0/2i . Consequently, the radius ra,i of
the lumen area of a bronchi of the ith generation filled with a
maximal thickness of mucus is

ra,i =
(

1

2

) i
4
∣∣∣∣4μA�A,0

πσ0
rb,i

∣∣∣∣
1
4

. (9)

This result is very general because the tree is only assumed
dichotomous.

The radii ra,i , which reflects here the maximal thickness
of the mucus layers for a given air flow, define an effective
tree in which air circulates. The equivalent hydrodynamic
resistance [21] of the effective tree is Ra = ∑N

i=0
1
2i

8μAlb,i

πr4
a,i

which measures the efforts needed to make air circulate in
the tree accounting for mucus layers. Mixing ra,i expression
(equation (9)) with Ra expression shows that, in a tree where
the mucus is present on the wall of every branch (ra,i � rb,i) at
maximal quantity (saturated), the hydrodynamic resistance of
the effective tree is proportional to the shear stress threshold
σ 0 and inversely proportional to the air flow �A,0 at tree root:

Ra = 2σ0

�A,0

N∑
i=0

lb,i

rb,i

. (10)

Thus, a tree at saturated equilibrium with mucus (maximal
mucus thickness in every branch) has a hydrodynamic
resistance which depends very differently on the geometry
parameters than a ‘naked’ tree whose resistance is Rb =
(8μa/π)

∑N
i=0 lb,i/

(
2i r4

b,i

)
. At saturated equilibrium with

mucus, the hydrodynamic resistance depends on the tree
geometry only by the ratios of lengths over diameters of its
branches. The mean of these ratios in the human lungs has
been found to be about 3 [25].

Idealized tree. To go further, we will now consider an
idealized tree (see geometry section above). It is defined
with four parameters: the radius rb,0 and length l0 of its first
generation branch, its homothety factor h and its total number
of generations N + 1 (numbered from 0 to N). The branches
radii verify rb,i = rb,0 hi and the branches length verify
li = l0 hi . In the case of an idealized tree, equation (9) becomes

ra,i =
(

h

2

) i
4
∣∣∣∣4μA�A,0rb,0

πσ0

∣∣∣∣
1
4

=
(

h

2

) i
4

ra,0. (11)

Equation (11) shows that the minimum radius of air lumen
area at saturated equilibrium with mucus follows a scaling law
that depends on the scaling law driving the diameters of the
bronchi radii. The effective tree has a diameter reduction factor
hdiam = (h/2)1/4. The effective tree has the same length
reduction factor than the bronchi length: hlength = h. The
dependence of hdiam relatively to h is shown in figure 3. In
particular, if h is smaller than hc = (1/2)1/3 then hdiam is larger
than h, and vice versa.

The maximum mucus thickness in a branch could however
be zero. If the bronchi radius is sufficiently small, then
shear stresses can be high enough to drain all the mucus
out, i.e. inducing ra,i = rb,i . Using equation (9) in this last
equality, a minimum bronchus radius rs,i for generation i can
be computed. If the bronchus of generation i has a radius rb,i

smaller than this minimum radius rs,i , then no mucus layer can
remain in the bronchus at saturated equilibrium:

rb,i �
∣∣∣∣4μA�A,0

πσ0

∣∣∣∣
1
3

hi
c = rs,i = rs,0h

i
c

and consequently rb,i = rb,0h
i � rs,0h

i
c

where rs ,0 = |4μA�A,0/πσ 0|1/3 is the minimum radius of the
first generation (case i = 0).
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Table 1. Radius of the first generation of the tree rb,0 and its homothety ratio h affect the existence and structure of the mucus layers along
the generations of the tree. nc is defined as the integer part of ln(rs/rb,0)/ln(h/hc).

rb,0 � rs ,0 rb,0 > rs ,0

h < hc No mucus layer in the tree Mucus layer from generation 0 to nc − 1; no mucus from generation nc to the last
h = hc No mucus layer in the tree Mucus layer from generation 0 to nc − 1; no mucus from generation nc to the last
h > hc No mucus layer from generation 0 to nc, mucus Mucus layer everywhere

later from generation nc + 1 to the last

Figure 3. The continuous curve represents the diameter reduction
factor hdiam of the effective tree (tree with mucus layers) versus the
homothetic factor h of the original tree (without mucus). The
dashed curve represents the homothety factor h of the original tree.

hc = (1/2)1/3 separates two behaviors: if h is smaller than hc, then
the effective tree has a diameter reduction factor larger than h; if h is
larger than hc, then the effective tree has a diameter reduction factor

smaller than h. The vertical dotted line corresponds to h = (1/2)1/3.

Mucus distribution at saturated equilibrium can then be
classified in different cases that depend on the relative position
of rb,0 with rs ,0 and on the relative position of h with hc.

Figure 4. Evolution of the mucus layers in the tree for a mean velocity at mouth level of 50 m s−1. Airflow is the most effective during the
initial seconds. The deepest bronchi empty quicker than the others because they have less daughter branches and thus they receive less
mucus from the bottom of the tree. The left plot corresponds to μm = 0.1 Pa s and σ 0 = 2 Pa; the middle plot corresponds to μm = 1 Pa s and
σ 0 = 2 Pa; the right plot corresponds to μm = 0.1 Pa s and σ 0 = 5 Pa.

(This figure is in colour only in the electronic version)

A critical generation nc can be introduced; it separates the
region with and without mucus and is defined by the integer
part of ln(rs ,0/rb,0)/ln(h/hc), see table 1.

The mean homothety factor has been estimated for the
lungs [25]; it is slightly larger than hc = (1/2)1/3 ≈ 0.79
and the radius of the first generation rb,0 is around 1 cm. With
σ 0 = 2 Pa (non-pathologic), we can estimate that rs ,0 is ranging
from 1 (rest regime) to 7–8 mm (cough), which is smaller
than rb,0. Hence, the results shown in table 1 indicate that a
mucus layer should be present in the whole tree, at least at first
approximation.

Transitory mucus distribution

The previous studies correspond to equilibriums with
maximum mucus thicknesses ‘authorized’ by a given air flow.
These situations would probably correspond to pathologies
involving high mucus secretion. The saturated equilibrium of
mucus in a tree depends on air flow level at tree root (�A,0),
mucus shear stress threshold (σ 0) and tree geometry. As soon
as the mucus layer is thinner than the characterized maximum
thickness then the distribution also remains unaffected by the
air flow.

Physical therapy focuses on removing the larger quantity
of mucus from the tree thanks to manipulations of the thorax
while seeking a minimal discomfort for the patient. The
air flow rate that exits the mouth during the manipulations
determines partly the efficiency of the draining (the higher
the air flow rate, the larger the shear stresses in the bronchi).
However, the time during which the therapist sustains this
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Figure 5. Proportion of the mucus volume initially in the tree that
has been expectorated after 4 s for the corresponding velocity at
mouth level.

flow in order to reach a distribution at quasi-equilibrium
is extremely important, because it is directly connected to
patient discomfort. This indicates that information on the
time needed to reach a distribution at equilibrium could help
to optimize the manipulations; this motivates our study of the
transitory behavior of mucus. The draining efficiency can
be measured by the hydrodynamic resistance of the effective
tree since it is directly related to the ease of breathing of the
patient. The hydrodynamic resistance of the effective tree can
be decreased either by draining the mucus out of the tree or by
a redistribution of the mucus in the bronchi.

In the simulations, we used an idealized tree with N = 17,
rb,0 = 1 cm and h = 0.83. To study the transitory phenomena
appearing when airflow and mucus interact, we chose as initial
distribution a state where bronchi are almost completely filled
with mucus at t = 0 s, i.e. ra,i(t = 0) = 0.1 rb,i . Figure 4 shows
mucus distributions in the tree for five different times for a
mean velocity in tree root (trachea) of 50 m s−1. Each figure
corresponds to a set of mucus parameters—left figure: μm =
0.1 Pa s and σ 0 = 2 Pa (non-pathologic); middle figure: μm =
1 Pa s and σ 0 = 2 Pa; right figure: μm = 0.1 Pa s and σ 0 = 5 Pa.
The curves represent the proportion of the bronchi radii filled
with mucus. In each figure, the black dotted line represents
the saturated equilibrium of mucus in the tree; it is the lowest
possible thickness for mucus at this flow rate. Whatever the
parameters, mucus motion is the most effective during the first
instants. A higher viscosity slows down mucus and longer
manipulation times are needed to reach the same distribution
than for a lowest viscosity (middle plot in figure 4). Mucus
thicknesses at saturated equilibrium in the tree are higher when
yield stress is higher (right plot in figure 4). Figure 5 shows
the proportion of mucus that gets out of the tree after 4 s of
manipulation at constant airflow rate.

The saturated equilibrium of mucus in the tree is the
best possible distribution achievable with constant airflow
manipulations. However, these distributions are achieved only
for long time lengths. Thus, we estimated the time length
needed to reach a configuration that would be ‘relatively close’

Figure 6. Duration of manipulations at constant airflow versus
mean air velocity in the trachea. The manipulation is stopped when
the hydrodynamic resistance of the effective tree is 50% larger than
the hydrodynamic resistance of the effective tree at saturated
equilibrium (see text). Mucus is redistributed in the tree either by
being drained out of the tree or by being pushed up the generations.

to that ideal distribution. To do so, we used the hydrodynamic
resistance of the effective trees (trees whose branch radii are
ra,i). We calculated the hydrodynamic resistance Ra,s of the
effective tree at saturated equilibrium. Then, we estimated
the hydrodynamic resistance Ra(t) of the effective tree during
a manipulation at constant airflow rate. The manipulation is
stopped when the hydrodynamic resistance Ra(t) is 50 percent
larger than the hydrodynamic resistance of the tree at saturated
equilibrium Ra,s (i.e. we stop when Ra(t) = 1.5 Ra,s). The
initial mucus distribution fills almost the whole tree (ra,i(t =
0) = 0.1 rb,i) and has been chosen in order to bring the air
lumen area radius ra,i(t = 0) to be smaller than the threshold
radius r0,i in the bronchi i for all the air flows tested. We
tested air flows ranging from rest regime (1 m s−1) to cough
regime (100 m s−1). The stop time is represented in figure 6;
it increases with air flow in the trachea.

Discussion

We have shown that the distribution of a mucus-like fluid in
a rigid tree is the result of complex interactions between fluid
rheology (threshold effect), tree geometry and air flow rates.
The study of these selected phenomena and their interactions
are one of the most important steps in understanding the
structure of mucus distribution in the lungs and to understand
how it can be moved forward efficiently toward the trachea.
Our model is able to give qualitative predictions of chest
physiotherapy techniques that used air flow to drain secretions
out of the bronchial tree (cough assistance, assisted ‘huffing’,
expiratory flow modulation, etc). These techniques have been
validated empirically and are known to be efficient clinically.
Our work is their first biophysical justifications. With some
improvements, this model should be able to give predictions
for a wider range of techniques (such as postural draining or
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percussion techniques) and bring interesting information on
their efficiency.

On mucus distribution

An airway tree with a Bingham fluid layer on its branches
wall has a ‘saturated’ configuration when the Bingham layer
is at equilibrium with the air flow in the tree. Each branch
is able to sustain a maximal quantity of Bingham fluid on its
wall for a given air flow rate. This maximal configuration
can be predicted analytically from the topology of the tree
and the total air flow rate in the root of the tree. The
geometry and hydrodynamic property of this configuration
is altered by simple changes of the air flow rate entering
the tree. The interactions between air flow and Bingham
fluid layers structure the Bingham fluid layers in the tree,
and the resulting effective tree (tree whose branches radius
is that of the air lumen area) has interesting properties. For
example, the hydrodynamic resistance of the effective tree can
be inversely proportional to the air flow entering the tree. The
hydrodynamic resistance of the effective tree is correlated to
the geometry of the original tree through the branches ratios
of length over diameter. When the diameters of the original
tree follow a scaling law, the effective tree does the same, at
least on a known number of successive generations, and both
laws are directly related. Such predictions can be used to solve
inverse problems on the geometry of the original tree or on the
Bingham fluid (estimation of the hydrodynamic resistance,
of the diameters). These properties could potentially be
developed into medical measurement tools and potentially
become diagnostic criterions.

Our model predicts the existence of a mucus layer in the
lungs in all the generations; this is particularly interesting
because the presence of mucus layers tends to move the
diameter reduction factor closer to hc = (1/2)1/3 (see figure 3).
The number hc is important since it reflects many theoretical
optimization processes related to the lungs and more generally
to dichotomical tree structures, see for example [21]. The
diameter reduction factor h in the lungs has been estimated in
the literature [25] and found to be not far from hc. Our results
indicate that regions of the bronchial tree with mucus layers
should have lumen areas diameter reduction factor closer to
the value hc.

From a physiological point of view, mucus production is
the most important in the medium generations of the lungs
(from 5 to 12) but remains small in the other. Thus, before
mucus can be expectorated, it has to progress toward the upper
generations. As stated before, we show that this transport
occurs only if the thickness of mucus is sufficient. The minimal
thickness depends on the generation and on the properties of
mucus (yield stress σ 0). Because the first generations of the
lungs contain less mucus; mucus has first to fill them before
it can go out of the tree. This re-organization is however very
important, since it modifies the hydrodynamic resistance of
the tree. Even though theoretically, mucus progression in the
tree could lead to an increase of resistance, we did not observe
this behavior, probably because it is often less costly in term
of hydrodynamic resistance to have the narrowest bronchi less

filled at the expense of the widest bronchi (the hydrodynamic
resistance of a bronchi is proportional to the inverse of its
radius at the power 4). Consequently, mucus re-organization
can ease respiratory difficulties of a patient even if mucus is
not drained out, because of a decrease of the hydrodynamic
resistance of her/his lungs.

It is necessary to perform successive manipulations to
reach a distribution at equilibrium with air flow (minimum
hydrodynamic resistance) because the quantity of air available
in the lungs is limited. The maximum quantity of air in the
lungs for adults is about 3 liters, which is expired in 1 s if
trachea velocity is 10 m s−1 (exercise) and 0.1 s if trachea
velocity is 100 m s−1 (cough). Thus, to perform successive
manipulations, it is necessary to refill the lungs with air using
inspirations. During inspiration, it is critical not to bring
mucus back down the generations. This needs an inspiration
slow enough (rest regime) because the air flow should not affect
the mucus layers. Consequently, the control of inspirations
is likely to be important to maximize the efficiency of the
manipulations during physical therapy. Our model is also able
to simulate inspiratory flow, thus it can be used to predict the
effect of inspirations when they are not easily controlled.

In our model, the only way to mobilize more mucus is
to increase the air flow; a higher air flow will reduce the
mucus minimal thickness. The larger the air flow, the better
we are able to make mucus progress toward the mouth. More
importantly we showed that high flows are the most efficient
because they are able to mobilize the largest quantity of mucus.
However, in physical therapy, another important criterion has
to be taken into account: patient discomfort. This discomfort
increases with air flow: pressure variation in the lungs tissue is
roughly proportional to the air flow and the physical therapist
has to overcome this pressure variation. Hence, to reach high
flows, she/he has to apply strong forces and thus increase
the patient discomfort. This indicates that even if low air
flows (but not too low since yield stress has to be overcome)
make mucus progress only slightly toward the mouth, their use
is not worthless since this progression has been gained with
low discomfort. Our model has the potential to predict an
optimal duration for each flow rate (for example from results
on hydrodynamic resistance such as those plotted in figure 6).
These predictions can be used to minimize the time spent at
high flow rates and thus to reduce the discomfort of the patient.

Finally, the existence of a maximal mucus layer on bronchi
walls predicts that the deepest part of the mucus layer could
potentially not be motioned with physiologically acceptable
airflows. This situation may arise when mucus yield stress
is high. If mucociliary clearance is ineffective, this could
potentially lead to mucus stasis. In such situations, the solution
is either to be able to reduce mucus yield stress or to use
alternative expectoration techniques.

Role of physical parameters

The role of mucus physical parameters is intimately linked
to the geometry of the tree. Mucus yield stress determines
whether mucus will move easily or not under the action of air
flow. If yield stress is too high, then mucus cannot move in the
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tree under reasonable values of air flow rates. In contrast,
if yield stress is small, then mucus can be easily put to
motion (however, if yield stress is too small, then the fluid
is almost Newtonian and gravity becomes non-negligible). A
shear stress that overcomes the yield stress in the mucus layer
is thus the trigger of mucus displacement. In our model,
the amount of shear stress in a bronchia is driven by two
parameters, one from the fluid and one from the geometry:
(1) the amplitude of the flow rate—larger flow rates induce
comparatively larger shear stresses and (2) the size of the air
lumen area in the bronchia—smaller air lumen area induce
comparatively higher shear rates. A small air lumen area
can be found in bronchi whose radius is small, in bronchi
that bear a large quantity of mucus, or finally in bronchia
that combines these two properties. When mucus is pushed
forward in a bronchus, the lumen area increased. If the flow
rate remains the same, the radius of the lumen area can become
too large to keep a shear stress high enough to overcome the
yield stress and to keep the mucus moving. In contrast, when
a bronchus is highly obstructed, its mucus moves easily and
fills the upper bronchus that is potentially less obstructed.
The air flow in that upper bronchus is initially too small to
overcome the yield stress, but since mucus keeps coming in, the
lumen area decreases and the shear stresses inside the bronchus
increase. Eventually, shear stress becomes sufficiently large to
overcome yield stress and mucus starts moving forward. These
phenomena describe how mucus progress in the tree and can
fill the less obstructed bronchi with mucus coming from the
more obstructed ones. At the end, this phenomenon makes the
mucus spread along the generations of the tree. Mucus reached
a stationary distribution characterized with mucus thicknesses
reflecting equilibrium between the mucus yield stress and the
shear stresses in the bronchi.

Mucus viscosity determines at which velocity the mucus
will flow when shear stress is larger than yield stress. Thus, the
quantity of mucus that gets out of the tree or the reduction of the
hydrodynamic resistance of the effective tree achieved with a
timed manipulation is directly related to mucus viscosity: low
mucus viscosity means that mucus will progress quickly in the
tree, get out of the tree and reorganize in the tree rapidly; high
mucus viscosity means the contrary. Thus, to achieve the same
result, more timed manipulations are needed for high mucus
viscosities than for low mucus viscosities.

Model improvements

In this work, we give indications on the possible effects a rigid
geometry would have on mucus distribution and draining in
the lungs. We showed that the system restricted to interactions
between air flow, mucus layers and rigid geometry is still very
complex, even with simplified hypotheses for fluids behavior
(low flow regime, Bingham fluid). Thus, it was important
to restrict the number of phenomena to be able to fully
understand the fundamental behaviors anchored in this system.
However, to reach realistic and quantitative predictions on
mucus draining in the lungs, it is necessary to include some
other important phenomena that are discussed below.

The physics of the fluids should be improved. Hence,
Bingham fluid captures only the most basic behaviors of

mucus. Mucus is known to have viscoelastic and thixotropic
behaviors that may induce more complex time dependent
results [31]: shear stresses applied for a relatively long time
on mucus may induce a decrease of the yield stress and of the
fluid viscosity.

Inertial effects and turbulence are known to exist and to
induce complex behaviors for both air and mucus (mucus
splitting at bifurcations, mucus waves and plugs, mucus
detachment, etc) [4]. Moreover, air and mucus profiles around
the bifurcations are not axi-symmetric. Consequently, axi-
symmetry hypothesis is a strong approximation. A model that
integrates all these phenomena cannot be axi-symmetric.

Now, considering the bronchial tree properties, the choice
of a tree model with symmetrical bifurcations is obviously an
approximation [24, 25, 32]. The rigid hypothesis is very
strong; it is well known that bronchi walls have complex
mechanics and that they are made of generation-dependant
proportions of various deformable biomaterials (cartilaginous
structure, muscles, etc). The fact that they are deformable is
important because changes in lungs volume alter the calibers
of the bronchi. Physical therapists use these constrictions
to move secretions upward in the lungs; however, bronchi
occlusions should be avoided. The constriction of the bronchi
depends on the volume of the lungs; thus, the lungs response
to manipulations changes over the course of the maneuver.
Because of bronchial constriction, increasing the applied
pressure does not systematically bring an increase of the air
flow, in particular at low lungs volume.

Mucus distribution in the lungs is very complex and not
spread homogeneously. It can depend on the pulmonary lobe
where the bronchus is located. Moreover, mucus is secreted
continuously by the bronchi cells and its volume regulated
by ion transport mechanism. So an improvement of the
model would be to take into account the physiological volume
regulation of mucus.

Consequently, the hypotheses made in this work have to
be kept in mind to interpret correctly the predictions of our
model. However, in order to well understand the effects of
each characteristics of the system, it is essential to work with
a limited number of hypotheses. This is the reason why we
chose, as a first step, to limit our work to the sole influence of
the tree geometry with a simplified fluid frame.

Conclusion

To our knowledge, this work is the first to introduce a
model of the effects of air flow on mucus distribution in a
tree with the goal to help the physical therapist to optimize
her/his manipulations. This model is an initial step toward a
justification of the suitability of the expiratory flow in physical
therapy and this work brings up the notion of minimal flow as
a possible criterion of mucus draining efficiency.

We investigated the role of the airway tree geometry, air
flow and mucus physical parameters on mucus distribution
at equilibrium states and at transitory regimes. Our results
showed the fundamental importance of these three aspects and
of their interactions. Our model gives predictions in terms of
mucus distribution in the tree. For a given geometry, air flow
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and mucus yield stress, a maximal stationary distribution of
thicknesses of the mucus layers exist in the bronchi. It has its
own structure that follows a scaling law if the geometry of the
tree follows a scaling law. This distribution cannot be changed
without changing the amplitude of the air flow. Our model also
gives qualitative predictions on how mucus progresses in the
tree. We have been able to determine the time needed to reach
a distribution of mucus close to the stationary distribution.
This duration is strongly related to mucus viscosity: the lower
the viscosity, the quicker mucus moves in the tree.

We are also able to propose, in the limitations of our
model, some of the following qualitative optimizations for the
manipulations of the physical therapists.

• To make mucus flow upward, mucus yield stress has to be
overcome: if air flow rates are too small, mucus cannot
move. So for each configuration, there exists a minimal
flow that is able to move mucus.

• When mucus moves, some of it can get out of the tree but
mainly it fills the upward generations and eventually reach
a stationary distribution. This new stationary distribution
is less resistive than the initial one and can ease the
breathing of the patient. Once this new configuration
is reached, the only way to mobilize more mucus is to
increase the air flow rate.

• Thus, the minimal air flow rate able to move
mucus increased progressively when manipulations are
performed. An air flow rate can be efficient at the
beginning of a set of physical therapists manipulations
but could become inefficient after a few manipulations.

• Patient discomfort is higher for higher air flow rates, so to
minimize patient discomfort, the physical therapist should
always be slightly over the minimal air flow rate that is
able to make mucus flow. Consequently, air flow rate used
in manipulations should be increasing in time, keeping
up with mucus redistribution in the lungs. This is an
important conclusion of this study, and one that could lead
to a testable hypothesis for experimental physiotherapy.

• Inspirations are needed to refill the lungs with air between
each manipulation; they should be made at low air flow
rate to keep mucus from going back down the tree.

This model remains yet a first approximation and thus can
only catch some qualitative aspects of the complex behaviors
involved in human mucus draining, mostly concerning the
role of the geometry and the parameters of a basic description
of mucus. Consequently, we plan to improve this model in
order to increase its predictive power and in order to bring
more quantitative information to the practitioner, in particular
concerning the adaptation of the manipulation to the patient
specificity (number of manipulations needed, amplitudes of
successive air flow rates, patient dependent definition of
discomfort, etc).

Appendix. Determination of the pressure drop per
unit length knowing ra, rb and Φa.

In this appendix, we describe the calculations of pressure drops
per unit length for the different cases of mucus states. All

calculations take place in a branch of the tree whose radius is
rb and air lumen area radius is ra . The yield stress of mucus
is σ 0. We call C = ∂p/∂z the pressure drop per unit length in
the branch. The air flow in the branch is known and is equal
to �a . Finally, we call s the sign of C = ∂p/∂z (s = 1 if C �
0 and s = −1 if C < 0).

Air flow is equal to

�a = 2π

∫ ra

0
v(r)r dr.

Integrating by parts and using equations (2) and (3) lead
to

�a = 2π

(
v(ra)

r2
a

2
− C

4μa

r4
a

4

)
,

where v(ra) is the velocity on the air/mucus interface. Its
expression depends on the following states of mucus.

(1) First state: mucus is liquid between the branch wall
located at r = rb and the radius r = r0 (associated with the
yield stress r0 = |2σ 0/C|) and solid elsewhere (case ra <

r0 < rb).
In this case v(ra) = v(r0) since mucus is solid between r0

and ra . Integrating equations (2) and (4a) leads to

v(ra) = v(r0) = − C

4μm

(rb − r0)
2.

Replacing v(ra) with the previous relation in the
expression of �a and using the fact that r0 = |2σ 0/C|,
then C is the solution of a second degree polynomial. The
solutions are

C1 = 1

2

× 8πr2
a μarbsσ0−8�aμaμm+4

√
−8πr2

a μ2
arbsσ0�aμm+4�2

aμ
2
aμ

2
m−2π2r6

a μaσ
2
0 μm

πr4
a μm+2πr2

a μar
2
b

C2 = 1

2

× 8πr2
a μarbsσ0−8�aμaμm−4

√
−8πr2

a μ2
arbsσ0�aμm+4�2

aμ
2
aμ

2
m−2π2r6

a μaσ
2
0 μm

πr4
a μm+2πr2

a μar
2
b

.

We have two possible pressure drops per unit length which
gives two possible values for r0 = |2σ 0/C|; however, they
are easily discriminated since only one at a time can verify
rb < r0 < ra .

(2) Second state: mucus is liquid everywhere, i.e. r0 < ra .
The integration of equations (2) and (4a) leads to

v(ra) = C

4μm

(ra − rb)(ra + rb − 2r0).

Mixing with the expression of �a , we have

C = −8μa

πr2
a

�aμm − πr3
a sσ0 + πr2

a rbsσ0

r2
aμm + 2r2

aμa − 2μar
2
b

.
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(3) Third case: mucus is completely solid (r0 > ra).
In that case v(ra) = 0 and

C = −16μa�a

2πr4
a

.

The function Ci = F(�a,i, ra,i) (equation (5b)) is built
with these expressions of C. To discriminate between
the different possibilities and know the mucus state, we
compute for each case the value of C and we calculate its
associated radius r0 = |2σ 0/C|. The case is correct only
if the position of the radius r0 relatively to ra and rb is
compatible with the case hypotheses.

References

[1] Knowles M R and Boucher R C 2002 Mucus clearance as a
primary innate defense mechanism for mammalian airways
J. Clin. Invest. 109 571–7

[2] Lai S K, Wang Y Y, Wirtz D and Hanes J 2009 Micro- and
macrorheology of mucus Adv. Drug Deliv. Rev.
61 86–100

[3] Dutau G 2000 Guide Pratique des Infections Respiratoires
Récidivantes chez l’Enfant (Paris: MMI Editions Havas
Medimédia)

[4] Grotberg J B 2001 Respiratory fluid mechanics and transport
processes Annu. Rev. Biomed. Eng. 3 421–57

[5] King M 2006 Physiology of mucus clearance Paediatr. Respir.
Rev. 7 S212–S4

[6] Van der Schans C P 2007 Bronchial mucus transport Respir.
Care 52 1150–6, discussion 1156–8

[7] Craster R V and Matar O K 2000 Surfactant transport on
mucus films J. Fluid Mech. 425 235–8

[8] Smith D J, Gaffney E A and Blake J R 2008 Modelling
mucociliary clearance Respir. Physiol. Neurobiol.
163 178–88

[9] Aubier M, Crestani B, Fournier M and Mal H 2009
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