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Abstract
Branching morphogenesis is a widely spread phenomenon in nature. In organogenesis, it
results from the inhomogeneous growth of the epithelial sheet, leading to its repeated
branching into surrounding mesoderm. Lung morphogenesis is an emblematic example of
tree-like organogenesis common to most mammals. The core signalling network is well
identified, notably the Fgf10/Shh couple, required to initiate and maintain branching. In a
previous study, we showed that the restriction by SHH of Fgf10 expression domain to distal
mesenchyme spontaneously induces differential epithelial proliferation leading to branching.
A simple Laplacian model qualitatively reproduced FGF10 dynamics in the mesenchyme and
the spontaneous self-avoiding branching morphogenesis. However, early lung geometry has
several striking features that remain to be addressed. In this paper, we investigate, through
simulations and data analysis, if the FGF10-diffusion scenario accounts for the following
aspects of lung morphology: size dispersion, asymmetry of branching events, and distal
epithelium–mesothelium equilibrium. We report that they emerge spontaneously in the model,
and that most of the underlying mechanisms can be understood as dynamical interactions
between gradients and shape. This suggests that specific regulation may not be required for the
emergence of these striking geometrical features.

S Online supplementary data available from stacks.iop.org/PhysBio/9/066006/mmedia

Introduction

Mammalian tree-like airways develop during the embryonic
period, and early morphogenesis consists of the repeated
branching of bronchial epithelium into lung mesenchyme.
The molecular actors at work throughout this period are
now relatively well known, and several pathways involved
in growth regulation have been identified during the past
two decades [1, 2]. However, the actual mechanisms of
shape emergence remain unclear, especially if we consider
certain aspects of lung branching geometry. Lung airways
have indeed several non-trivial features that have, to our
knowledge, not or little been addressed before. First, the

3 These authors contributed equally to work.

tree is self-avoiding: bronchi never meet one another during
morphogenesis. Second, distal epithelial buds, while being a
site of important proliferation, never reach the mesothelium
enclosing lung’s mesenchyme. This suggests that bud tips
somehow reach a dynamical equilibrium with the facing
mesothelium. Third, the tree is far from being as regular as
it is often described to be [3]: not only branches diameters
and lengths are prone to significant variations within the same
generation and from one individual to the other, but it is very
well documented that branching events are mainly asymmetric,
and this asymmetry has been reported to play an important role
in lung efficiency [4, 5]. Finally, morphometric data suggest
that successive generations of bronchi are smaller and smaller,
with an average homothety ratio of about 80%.
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Most of the attempts made to describe or to model
lung development, qualitatively or quantitatively, do not
address the emergence of these striking features of the shape
[6–11]. However, any attempt to model morphogenesis should
be able to account for such characteristics, as they must
somehow witness the mechanisms involved in shaping. In
a previous paper, we proposed a new scenario for lung
branching morphogenesis, together with qualitative modelling,
numerical simulations and experiments [12]. The model
integrates the core signalling network involved, and the
geometry and diffusion relevant to lung early development.
In particular, the elementary branching mechanism and the
organization mechanism were discussed. We showed that the
expression pattern of the Fibroblast growth factor 10 (Fgf10),
spatially restricted by Sonic HedgeHog (SHH) [13, 14],
implies the diffusion of the proteic product FGF10 from distal
mesenchyme towards epithelium. We found that diffusion in
this geometry leads to a growth instability of the bronchial
epithelium, which undergoes spontaneous branching instead
of merely inflating as one could expect. We reported that this
very mechanism also accounts for the self-avoiding feature of
the tree.

In this paper, we detail further analysis of the fundamental
branching mechanism uncovered thanks to the Laplacian
model. We are willing to investigate the emergence of the
previously enumerated features of the bronchial tree, through
qualitative and/or quantitative comparison of the model-grown
trees to available lung data. Both the questions and findings
are original and of major importance in the understanding
of morphogenesis mechanisms. Indeed, most of the growth
models found in literature, whether they are confronted to
data or not [11, 9], are algorithmic models with specific
instructions: new branch creation, rotation, etc. Consequently,
they do not allow the identification of branch formation
mechanisms. Here we provide evidence that the mere diffusion
of FGF10 from distal mesenchyme in fact accounts for the
following features of the shape: dispersion in size, distribution
of asymmetry ratios, and convergence towards an epithelium–
mesothelium equilibrium. For comparisons, we used the
human morphometric data collected and made available by
Raabe et al in 1976 [15], as it includes for each branch its
length, diameter, generation and related mother and daughters
branches. The question of the confrontation of a model at
early stages of morphogenesis to mature lung data is addressed
later in the paper. Finally, the problem of the homothety ratio
between generations is not specifically examined in this work,
although a qualitative scenario is discussed.

Results

The lung morphogenesis model

In this section, we will quickly present the morphogenesis
model used in the rest of the paper. It was first introduced and
widely discussed in a previous article [12]. During early lung
morphogenesis, the central proliferation role of FGF10 has
been identified since the 1990s [14, 16, 17]. In particular, null
mutants of Fgf10 or its receptor Fgfr2b have been reported to

present lung agenesis [18, 19]. Fgf10 expression is spatially
restricted to the distal mesenchyme by SHH. FGF10 thus
diffuses from distal mesenchyme towards epithelium, where
it induces epithelial proliferation. The diffusion process is
physically driven by the gradient of FGF10 concentration,
with a maximum concentration near the expression site (distal
mesenchyme) and a minimum concentration near the reception
sites (epithelium). We proposed and confirmed that the
concentration c of the FGF10 protein within the mesenchyme
is well described by Laplace’s diffusion equation:

∇2c = 0. (1)

The steady state assumption supposes that growth is
slower than diffusion. This is consistent with the widely
reported observation of Fgf10 expression domain spatial
stability during growth: it remains restricted to the distal
mesenchyme. The boundary conditions are related to Fgf10
expression and FGF10 binding to FGFR2b. They consist in
a maximal concentration cmax on the distal boundary where
Fgf10 expression is strong (mesothelium), and in a minimal
concentration cmin on the epithelial sheet where the protein
is received and degraded. Growth is simply computed as
a function of FGF10 flux received. As diffusion tends to
spatially equilibrate concentration, the local diffusive flux is
proportional to the local gradient of concentration. The motion
of both boundaries is thus written as follows:{

ue = f (∇c)

um = (1 + g) f (∇c).
(2)

ue and um respectively stand for the normal velocity of the
epithelial and mesothelial sheets. The growth response f
is theoretically underlain by lung regulatory network and
by the mechanical properties of the epithelium–mesenchyme
interface. Practically, we use smooth threshold functions
(sigmoid), with threshold G0 and threshold width σ . Growth
dependence to gradient rather than concentration has been
deeply discussed in our previous paper. While it is often
assumed that cells are sensitive to concentration, sensitivity
requires measuring an amount of interactions per unit of time.
Unless it moves quickly in the medium, a receptor cannot
count surrounding particles, but needs to count how many
particles reached it through diffusion. Here FGF10 binds to
FGFR2b only if the first ‘hits’ the second, and the amount
of FGF10 received by epithelial cells is consequently related
to the flux (thus to the gradient). This hypothesis was well
confirmed by our previous work [12], in particular we showed
that it explains the patterning of FGF10-induced genes such
as Spry2. The experimental fact that homogeneous addition
of exogenous FGF10 does not cause branching failure [20]
may be opposed to a flux-based sensitivity. This is in fact
not a valid argument, since in these experiments, FGF10
consumption by epithelial cells will quickly restore a gradient.
The parameter g stands for mesenchymal proliferation, and
the corresponding term gf (∇c) in um is discussed in our
first paper. Simulations based on this model showed that the
initial epithelial tube robustly undergoes repeated branching,
that the tree formed is self-avoiding and that the distal buds
never reach the mesothelium. This is spontaneous as no
branching routine of any kind is implemented in the model.
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Figure 1. Typical numerical simulation with the corresponding growth response f (λ = 0.075, g = 5). Subfigures are time-lapse images of
the simulation, from initial condition (time step 1) to simulation stop (time step 2000). There is a factor two in magnification between the
first and the second line. All values are given in arbitrary units (AU).

Branching relies on the instability of the epithelial sheet:
spatial perturbations are amplified as they locally increase the
concentration gradient, and thus the received flux of FGF10.
When the space between two growing branches decreases,
the local gradient is locally reduced, which prevents from
branches collision. A typical run is presented figure 1. In the
simulations, equations are solved thanks to the finite elements
method. We called λ the interfacial resolution of the mesh used
to solve Laplace equation. As discussed later in the paper, λ

has an implicit physical role. Please refer to supplementary
data for more details concerning the simulations (available at
stacks.iop.org/PB/9/066006/mmedia).

Branches typical sizes and dispersion in size

Lung is often mistakenly considered as a regularly branching
dichotomous tree. While the first generations have been
reported to be very stereotyped, it seems that later generations
rather fill available space than follow a stereotyped routine
[21]. Weibel reported that there is important dispersion in
branches sizes, even among a unique generation [3], and that
branching events are irregularly spaced. While it is very useful
to consider an averaged tree for shape analysis purposes or to
model flow in the tree [22], dispersion in sizes is inherent
to morphogenesis mechanisms, and understanding these
mechanisms therefore requires accounting for this dispersion.
In this section we analyse the typical sizes and size dispersion.
For each branch, the length is noted l and the diameter w.
Morphometry measurements of adult lungs are taken from
Raabe et al data. Information and references concerning data
collection are provided in the supplementary data (available
at stacks.iop.org/PB/9/066006/mmedia). Measurements from
growth simulations are numerically implemented: a hierarchic
skeleton of the tree is computed thanks to the Voronoi
diagram, and allows extracting relevant distances (AU). A
more precise description of the computational techniques is
available in the supplementary data (supplementary figure 1
(available at stacks.iop.org/PB/9/066006/mmedia)). It could
seem questionable to compare mature lungs geometry to the
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Figure 2. (A),(B) Human data. (C),(D) Simulations (λ = 0.075,
g = 5.5). (A),(C) Distribution of branches diameters rescaled by the
mean diameter of the corresponding generation. (B),(D) Distribution
of branches lengths rescaled by the mean length of the
corresponding generation.

results of an early morphogenesis model. The assumption
is that features of the shape, such as asymmetry or size
dispersion, are not a consequence of aging but rather inherent
to morphogenesis. Although this is a little discussed matter in
relevant literature, available data shows that this is indeed the
case: variability in branches size and asymmetry are present at
developmental stages.

Analysis of Raabe data shows that typical length scales
exist in the bronchial tree. Figure 2(A) shows the distribution
for diameters. Values are rescaled with respect to the mean
diameter wm(N) of the corresponding generation N, which
allows to represent all generations on one histogram. Similarly,
figure 2(B) shows the histogram for branches lengths rescaled
by the mean length of the corresponding generation, lm(N).
We clearly obtain a peak near the mean rescaled value, for
both diameter and length. However, there is in both cases a

3

http://stacks.iop.org/PB/9/066006/mmedia
http://stacks.iop.org/PB/9/066006/mmedia
http://stacks.iop.org/PB/9/066006/mmedia


Phys. Biol. 9 (2012) 066006 R Clément et al

0 0.05 0.1
0

0.5

1

1.5

2

λ (AU)

B
ra

nc
h 

di
am

et
er

 w
 (

A
U

)

0 2 4 6 8
0

0.5

1

1.5

2

g

B
ra

nc
h 

di
am

et
er

 w
 (

A
U

)

(A) (B )

Figure 3. (A) Mean diameter of formed branches as a function of the cut-off length λ (with g = 5). (B) Mean diameter of formed branches
as a function of the mesenchymal proliferation term g (with λ = 0.075). Error bars represent the standard deviation.

significant dispersion around the mean rescaled value. Also,
the distributions are not normal, as the peaks are right-tailed.

These observations are not trivial, and we wanted to test
the model to find out if the dispersion in size was similar.
We computed similar measurements on model-generated
trees. To keep the comparison to data relevant, we used the
same rescaling techniques and plotted the rescaled diameters
and lengths distributions (figures 2(D), (E)). We found a
good agreement between human data and model-generated
trees: distributions shapes obtained are very similar: they are
not normal and present a right tail. However, quantitative
discrepancies can be noted, such as the tail’s thickness or
the width of the distributions. Since the model is built on
the growth response to FGF10, it is very likely that a more
realistic growth response would be required to achieve a better
accuracy. While this would prove very interesting for future
studies, the purpose of this model is not quantitative fitting but
rather the identification of mechanisms. We have here evidence
that FGF10 diffusion alone provides a qualitative explanation
for size dispersion: as branch formation is spontaneous in
the model, the fact that the model qualitatively reproduces
the size distribution is not trivial. It also suggests that size
dispersion may not require specific regulation, but may rather
be a consequence of the growth instability underlain by FGF10
diffusion from distal mesenchyme. Although in both cases
(data and simulations) we considered branches altogether, it
is worth noting that the global shape of the distributions does
not change with the generation.

In our previous paper, we discussed the possible origins
of the typical size, in particular the rigidity of the epithelium–
mesenchyme interface. Here we confirm that the ‘persistence
length’ of the epithelial sheet plays a central role. In the model,
this mechanical persistence length is implicit, and computed as
the spatial resolution of the epithelium–mesenchyme interface
λ [12]. It is equivalent to a persistence length since nothing
can be observed under this length scale: possible perturbations
of the surface are smoothed. Physically, it denotes the stiffness
of the epithelial sheet, in other words the strength of cell–cell
bonds. In some way, it is similar to the capillary length known
to play a central role for size selection in the viscous fingering
instability [23]. We plotted the mean diameters of the model-
generated trees against the cut-off length λ. Similarly to what

was found in viscous fingering for the capillary length, the
mean value of branches diameter increases with λ (figure 3(A)).

Although this suggests that epithelial stiffness may play
a role in branches diameters, this is not a definitive answer
to the question of size selection: additional experiments are
required to confirm this hypothesis. Also, other parameters
are known to have an influence on branches sizes: Unbekandt
et al for instance reported that trachea occlusion, by increasing
lumen’s pressure, had an influence on the growth rate and
on branches size [24]. It is worth noting that the value of g,
that stands for mesenchymal proliferation, has no influence on
branches size (figure 3(B)), although it has a strong influence
on the epithelium–mesothelium distance, as discussed later in
the paper.

Asymmetry of branching events

Morphometric studies have, among others, focused on the
asymmetry of branching events. In this work we define the
asymmetry ratio of a branching event as the ratio between
the diameters of the two daughter branches, i.e. A = w1/w2

with w1 � w2. The closest A is to 1, the more symmetric is
the branching event. The average value of A is roughly 0.8
in humans. Although small variations exist among individuals
and in other species, the mean ratio is very robust and remains
close to this value. The asymmetry ratio has also been reported
to play an important role in adult lung efficiency [4, 5]. Data
made available by Raabe et al allows extracting the ratios,
as branches size are provided together with their hierarchic
position in the tree. It is then easy, for a given branch,
to measure the asymmetry ratio of the associated daughter
branches. Figure 4(A) displays the distribution of asymmetry
ratios obtained from human data (generations 1 to 11). There
is important dispersion in asymmetry ratios, with a mean value
of 0.80. It is worth noting that the last column (A close to 1)
is surprisingly high. There is in fact a bias related to data
collection, as measurements are rounded to the closest 0.1 mm.

For small branches with a typical diameter of a few tenths of
mm (a lot of branches, since the number of branches increases
with the generation), this represents an important error and
implies an accordingly important chance to measure a ratio
of exactly 1. The last column thus includes many branching
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Figure 4. (A), (B) Human Data. (C), (D) Simulations (λ = 0.075, g = 5.5). (A), (C) Distribution of the asymmetry ratios.
(C), (F) Asymmetry ratio versus diameter of the mother branch for all branching events. No apparent correlation is found.

events with measured ratio exactly equal to 1, that should in
fact stand in neighbouring columns. Searching for the possible
influence of branches size on the asymmetry ratio, we also
compared the diameter of the mother branch to the asymmetry
of the related branching event. Figure 4(B) shows that the
diameter of the mother branch has no noticeable influence on
the asymmetry ratio.

Again, we wanted to investigate if the instability
mechanism underlain by FGF10 diffusion and described by our
Laplacian model accounted for asymmetric branching events.
We computed the hierarchic skeleton of the final shapes.
Information for each branch includes sizes and position in
the tree, and similarly allows extracting asymmetry ratios.
Figure 4(C) displays the distribution of asymmetry ratios
obtained from model-generated trees. Similarly to what we
observed in available lung data, we found that the average
branching event is asymmetric, and that the mean asymmetry
ratio equals 0.78 for the set of parameters used, compared
to 0.80 in Raabe data. The distribution is qualitatively very
similar, except for the peak of A = 1, which, as discussed,
is biased. Figure 4(D) shows that the asymmetry ratio of a
branching event is not correlated to the size of the mother
branch, as it was found for Raabe data. Again, the data and
model distributions are non-trivial and very similar, suggesting
that specific regulation may not be required to achieve the
statistical asymmetry of the branching events.

Further analysis of the model-generated trees suggests
that the value of the asymmetry ratio is very robust. It is
worth noting that no fitting or parameters adjustment was
done to achieve a ratio of 0.78. However small but coherent
variations of A were observed when available parameters
were modified. We hypothesized that these variations may
be related to the ratio of occupied space: as it modifies
the growth rate distribution along the tip, it modifies the
probability distribution to develop an instability. Therefore
we designed specific simulations to address this question: a
unique epithelial tube is grown in an epithelial sector of fixed
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Figure 5. Mean asymmetry ratio (averaged from 60 to 100 runs)
versus angular opening in simulations where a unique epithelial tube
is grown in an angular sector (λ = 0.075, g = 3). Error bars
represent the standard deviation.

angular opening. This mimics the presence of neighbouring
branches at a certain distance. Growth is implemented thanks
to the same model until a branching event occurs and two
daughters branches are formed. For each angular opening
dozens of independent runs are made, and a mean asymmetry
ratio is obtained. As shows figure 5, the mean asymmetry ratio
has only small absolute variations, but is clearly higher when
the angular opening is small. When the angle is increased,
the asymmetry ratio tends towards a limit value standing
between 0.6 and 0.7. This suggests that the close and restrictive
presence of neighbouring branches stabilizes branching events
and involves more symmetric trees, whereas branching events
are more asymmetric when available space is important.

The influence of space-filling on A should be interpreted
as a geometrical effect of the diffusion process. As
FGF10 concentration on the whole epithelium is cmin, the
neighbouring presence of branches lowers the gradient of
FGF10 on the sides of the branch. The closer are the
neighbouring branches, the more FGF10 flux is focused on
bud’s tip. The growth rate distribution along the tip is thus
narrower. As spatial perturbations are more susceptible to
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Figure 6. (A) Mouse lung at E12.5 stained for E-Cadherin (courtesy of E Keshet [25], adapted with permission from Development). One can
clearly identify a well-defined distance between distal tips and mesothelium. Scale bar is 200 μm. (B) Simulation at time step 300
(λ = 0.075, g = 3). A similar well-defined distance between tips and mesothelium is observed. (C) Idealized circular geometry for the
calculation. We consider a unique epithelial tip (radius of curvature Re) at a distance d from mesothelium (radius of curvature Rm). The angle
θ is the angle to the tip. The dashed rectangle schematically delimits the area of interest.

develop and induce branching if they have an important growth
rate, i.e. if they are closer to the tip, branching events are
statistically more symmetric. When neighbouring branches
are far, on the contrary, the growth rate distribution spreads
on the tip. The results suggest that beyond a certain angle,
this geometrical effect is too weak to induce an effective
change in gradient distribution. In other words, branches do not
‘sense’ each other beyond a certain distance (here, angle). It is
worth noting that in model-generated trees, we were unable to
achieve mean ratios under 0.7, suggesting that spontaneously
forming trees are always in a ‘self-sentient’ regime (left part
of the curve).

As space-filling is of major importance for lung function
and efficiency, one could hypothesize that lung morphogenesis
stands in a highly-filled volume regime. This is partly
confirmed by figure 7: an asymmetry ratio of 0.8 corresponds
to small angular openings, and to a regime in which branches
do sense their neighbours. This could also explain the small
variations in asymmetry ratio observed from one individual to
the other, or from one species to the other: in this regime, small
variations in available space do affect the mean asymmetry
ratio. Direct measurements of the space actually occupied
in several individuals would be useful to confirm this last
hypothesis.

Epithelium–mesothelium equilibrium

Observation of lung development reveals another striking
feature of the shape. Epithelial buds, although they are major
sites of proliferation, never reach the mesothelium enclosing
the mesenchyme (figure 6(A)). Looking more closely at this
aspect of the shape, available imaging reveals that all buds
stand at a comparable distance of the mesothelium during
growth: the sac enclosing the growing organ develops in such
way that a dynamical equilibrium is reached between distal
epithelium and mesothelium. Although this is again not trivial,
the question has to our knowledge never been addressed in
relevant literature. No information related to this distance
can be extracted from the data collected by Raabe et al,
but qualitative observations at various stages of development
and in various species suggest that the existence of such an
epithelium–mesothelium equilibrium is a general feature of
lung development. Bronchi would otherwise penetrate the

pleural mesothelium. In the model, this equilibrium appears
spontaneously, as shown by simulations (figure 6(B)); again
this suggests that no specific regulation is required to achieve
the equilibrium, as it seems inherent to the mechanism
underlain by FGF10 diffusion from distal mesenchyme. In
this section we will discuss the mechanisms involving this
equilibrium.

Measurements of the distance d from distal tips to
mesothelium after a simulation has ended allows testing the
influence of the available parameters on the distance, and
reveals that d mainly depends on the value of g (figure 7(A)).
This is rather intuitive: the distance between epithelium and
mesothelium depends on relative mesenchymal proliferation.
It is worth noting that the cut-off length λ, that had critical
influence on branches size (figure 3(A)), seems to have no
influence on the distance (figure 7(B)). Similarly, g had no
influence on the branches size (figure 3(B)). This suggests that
d may be another typical length scale emerging during lung
development.

Measurements of the evolution of d suggests that it does
not converge as the tree grows: it slowly increases with the
size of the tree. Thus we rescaled this distance by the radius
of curvature Rm of the closest point of the mesothelium:
d̃ = d/Rm. This rescaled distance converges in simulations
towards an equilibrium value d̃eq. To understand the dynamics
of a bronchial tip, we focused on the local geometry of the bud
and its surroundings. Let us consider a portion of epithelium
(distal tip) with radius of curvature Re, separated by a distance
d from a portion of mesothelium with radius of curvature Rm.
We are interested in the dynamics of these local observables,
and in particular in the dynamics of the rescaled distance, d̃. We
do not consider the rest of the tree, and approximate this local
geometry with two circles of radii Re and Rm (figure 6(C)).
In the general case, the circles are not concentric. The exact
expression of the Laplacian concentration can be calculated
thanks to a conformal mapping of the concentric solution,
which then leads to the exact expressions of the gradient
(∇c)epi and (∇c)meso along epithelium and mesothelium
respectively. As we focus on the tip’s behaviour, we only
consider small angles, and can develop the expressions of the
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Figure 7. (A) Mean distance from distal tips to mesothelium as a function of the mesenchymal proliferation term g (with λ = 0.075).
(B) Mean distance from distal tips to mesothelium as a function of the cut-off length λ (with g = 5). Error bars represent the standard
deviation.
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gradient at the second order in the angle θ (with θ = 0 at the
tip, see figure 6(C)):{

(∇c)epi = ae + beθ
2

(∇c)meso = am + bmθ2.
(3)

Coefficients ae, be, am and bm are functions of Re, Rm, and
d. Details of the calculation are provided in the supplementary
data (available at stacks.iop.org/PB/9/066006/mmedia). Like
in the simulations, growth is a function of the gradient, and
thus here of the angle θ . This involves an evolution of the
curvatures and of the distance. We are then able to write the
evolution of the three variables d, Re and Rm. With the dot
denoting the temporal derivative, it reads:⎧⎨

⎩
Ṙe = f (ae) − 2be f ′(ae)

Ṙm = (1 + g)[ f (am) − 2bm f ′(am)]
ḋ = (1 + g) f (am) − f (ae).

(4)

Given initial conditions for Re, Rm and d, we can solve
this system numerically. Starting with the initial condition used
in growth simulations, we can directly compare the evolution
of d̃ in the simulations to the evolution of d̃ predicted by
equation (4). We focus here on linear growth responses for
simplicity purposes and will discuss the importance of f shape.
A direct comparison is provided for a typical simulation on

figure 8(A). There is good agreement between the numerical
experiment and the prediction, and d̃ converges toward an
equilibrium value d̃eq. Solving the system (equation (4))
until the equilibrium is reached with various values of g,
we can predict a theoretical dependence of d̃eq relatively to
g, and compare the curve obtained to the curve built with
measurements from numerical simulations (figure 8(B)). The
agreement is very good for small values of g. For higher
values of g, the predictive curve overestimates the value
of d̃eq. This was to be expected, since in the two circles
model the influence of neighbouring branches was neglected,
which is abusive for large values of g. When the distance to
mesothelium is small (small g), the gradient at the tip is mostly
determined by the close presence of the mesothelium: the two
circles approximation is good. When the distance is important
(high g), the presence of neighbouring branches modifies the
gradient distribution, and the circles approximation becomes
bad.

The main idea behind these results is that the interplay
between the two moving boundaries, the epithelium and the
mesothelium, involves spontaneous regulation of tips growth.
This dynamics is original and, to our knowledge, is reported
here for the first time, although it is likely to exist in other
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organs or physical systems. The results presented here show
that this self-regulation exists in the lung thanks to the
spontaneous dynamics of bud tips shape and curvature. Indeed,
it implies that FGF10 concentration gradient, very sensitive to
local geometry, is such that d̃ is kept constant. In other words,
the distance d and curvature radii Re and Rm at bud tip are
determined by the ratio between ue and um. From a theoretical
point of view, this is how g controls d̃eq. This is in fact very
intuitive: proliferation between epithelium and mesothelium
partly controls the distance and the curvatures. It is also
intuitive that d̃eq tends to 0 when g tends to 0: mesenchymal
proliferation is actually required to prevent any epithelium–
mesothelium contact, as observed during lung development.
Extensive study with various growth responses will be useful to
confirm that behaviour. However, sigmoid-based simulations
presented in this paper suggest that this is indeed the case,
although no quantitative comparison between simulations and
calculation is provided. Also, additional in vivo measurements
and fine imaging of bud tips shapes and aspect ratios would
prove very interesting in the light of these findings.

Discussion

Specific regulation may not be required

In this paper, we analysed various aspects of lung
morphogenesis thanks to a simple model based on FGF10
diffusion from distal mesenchyme, first introduced in a
previous article. We want to point out that the purpose of
such a model is not to actually fit lung development or to
quantitatively predict lung morphology; but rather to identify
the mechanisms involved in pattern formation and in the
emergence of the striking features of the shape. The strong
qualitative agreement obtained between the model and the
observation suggests that no specific regulation is required
to achieve these features. However, it is likely that they
are regulated by other pathways. This is consistent with
available mutant data: except from null mutants of Fgf10
or Fgfr2b, displaying agenesis, and null mutants of Shh,
displaying branching failure, mutations only lead to ‘minor’
shape changes, with no loss of these features. The fact that
Shh null mutants lungs fail to branch is also consistent with
the model, as the restriction of Fgf10 expression to distal
mesenchyme is lost.

Homothety ratio between generations

An important aspect of lung development which has not
been specifically addressed in this paper is the homothety
ratio between generations. However, the following hypothesis
can be made. In the model, proliferation (and thus, growth)
is only triggered by FGF10 flux. But in addition to this
differential FGF10-induced growth, there may be homothetic
growth, unrelated to FGF10. Even if the typical size of newly
formed branches does not change throughout generations,
older branches would continue to grow homogeneously. This
scenario naturally leads to a final tree with branches with
decreasing sized along the generations. Simulations, not
provided here, confirm this hypothesis. To confirm if this
is the actual mechanism at work during lung development,

measurements of branches diameters at the very moment they
form will be required.

Side-branching and tip-splitting

In this paper we do not introduce specific analysis for side-
branching versus tip-splitting (and therefore stuck to the
most common lung tree nomenclature, from proximal to
distal branches). It is unsure that side-branching plays a
significant role in lung development, as suggested by recent
3D reconstructions [21]: it is indeed hard to state whether
there is side-branching or if this is irregular and/or asymmetric
tip-splitting. Moreover, side-branching in Laplacian system is
known to result from tip stabilization by external factors such
as anisotropy or narrowing environment [26, 27], factors that
are absent in our simplified 2D model, although they may
exist in lung morphogenesis. Therefore, we do not think that
the merging of all branching events into one category (which
also happens to allow easy confrontation to available data,
where the same was done) introduces a flaw in the conclusions
of the paper, that lie in more general mechanisms of shape
emergence.

Lung grows in three dimensions

A surprising fact is that a two-dimensional model
allows such good agreement with three-dimensional
lung data. In fact, the Laplacian instability mechanism
modelled in 2D is perfectly relevant to 3D problems.
This is well confirmed by our preliminary results
of 3D simulations (figure 2 in supplementary data
(available at stacks.iop.org/PB/9/066006/mmedia)). Despite
very promising results, the important computation times
involved by 3D simulations still prevent one from carrying
out this study rigorously in 3D. But in the few runs performed,
we similarly found that symmetry is broken, tip growth is
favoured, typical length scales emerge with respect to the
parameters used, and branches sizes spread around a typical
length scale. The global mechanism thus seems conserved.
More surprising is the conserved value of the asymmetry ratio.
A possible explanation is the following: even in 3D, at the
onset of a bifurcation, a branching plan is determined. This is
a geometrical effect of the instability: the axisymmetry of the
bud is broken and a branching plan is selected. Bud’s growth
rate distribution in this branching plan should be qualitatively
similar to the 2D growth rate distribution, and should lead
to very similar values of the asymmetry ratio. This argument
is also relevant to the distribution of branches sizes, which
should also rely on the growth rate distribution along bud
tip. Calculations of the 3D growth rate in a plan could prove
interesting to confirm this last hypothesis.

Conclusion

Finally, this work tends to confirm that FGF10 diffusion
from distal mesenchyme not only accounts for branching
morphogenesis, but also for many other features of the shape.
The emergence of typical sizes (diameter and length) and
the dispersion around the typical sizes are inherent to the
growth instability, while asymmetry ratios and epithelium–
mesothelium equilibrium result from dynamical and reciprocal
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interactions between flux distribution (inducing growth and
thus shape modification) and shape (that modifies gradients
and thus fluxes). Altogether, these results suggest that the
self-regulated instability mechanism, underlain by FGF10
diffusion from distal mesenchyme, may indeed be the master
mechanism of early lung branching morphogenesis.
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Growth simulations

The computational techniques and algorithms are similar to those introduced
and described in our previous paper ”Shape self-regulation in early lung mor-
phogenesis”. In that paper, simulations were computed with Matlab, however
in this present work geometrical statistics on large trees were needed and in
most cases, the original code was too slow to reach reasonnable computation
times. Thus, we implemented the code in the free finite elements software
Freefem++ (http://www.freefem.org/ff++) and we interfaced it with the
free mesh generation software GMSH (http://geuz.org/gmsh). In this pa-
per, all simulation results were obtained from FreeFem++ simulations except
simulations using linear growth responses, already carried out under Matlab.

The linear growth response used in this paper writes as follows:

f(∇c) = ∇c (1)

The sigmoid growth response writes:

f(∇c) = tanh(∇c/gs) (1 + tanh((∇c−G0)/σ))/2 (2)

The prefactor tanh(∇c/gs) only insures that f(0) = 0. In all simulations
with a sigmoid growth response, gs is set to 0.8, G0 is set to 2.5 and σ is set
to 1.4. A sigmoid is a smooth step function. G0 and σ respectively represent
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the ”threshold” and the width of the step. The parameters g and λ may
vary, and their values are always specified in the paper. The time step is set
to dt = 0.025 in arbitrary units (AU). The initial epithelial tube has a radius
of 0.2 (AU), while the mesothelium has a radius of 1 (AU).

Measurements from simulations

Measurements required extracting a hierarchic skeleton from the simulated
trees. For that purpose, we used Matlab to compute the Voronoi diagram of
the shape (Figure 1, left). The set of Voronoi points obtained that are inside
the shape constitute the skeleton (Figure 1, right). Bifurcations (branching
events) are easily detected: a Voronoi point corresponding to a bifurcation
point has three neighbours instead of two. Branches are defined by the sets of
points between bifurcations. Starting from the very first branch, we are able
to browse the tree branch after branch, ordering them according to bifurca-
tions. Thus, a typical branch has four related branches: a mother (previous
generation), a sister (same generation), and two daughters (next generation).
The following informations are extracted for each branch:

- Position in the tree (generation and related branches: mother, sister,
daughters)

- Length (cumulative distance from the first Voronoi point of the branch
point to the last Voronoi point of the branch)

- Diameter (two times the mean distance from Voronoi points to the
boundary)

- Asymmetry ratio if the branch has two daughters (ratio between the
diameters of the daughter branches).

Measurements from Raabe et al. data

In the paper, we used several times measurements taken from Raabe et al.
data. We used only human data from the first male individual (segments
labeled as D1, D2, D3, D4, D5, D6, D26, D27, D28, D29, D30) in the
description of the measurements. Branches were selected only if proper mea-
surements were possible (see Raabe’s comments concerning anomalies pre-
venting measurements). Data together with the description of the measure-
ments can be found on the web at:
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Voronoi diagram (detail) Voronoi skeleton

Figure 1: Left: Voronoi diagram of a simulated tree. Only a detail is dis-
played for readability. Right: skeleton (thick dotted line) obtained from the
Voronoi diagram (solid line).

http://mae.ucdavis.edu/wexler/lungs/LF53-Raabe/

3D implementation

The basic algorithm of 3D simulations is similar to the one used in 2D, while
the tools are slightly different. FreeFem++ is still used for finite elements
solving, Freeyams is used to mesh the epithelial and mesothelial surfaces with
triangles of homogeneous sizes, GMSH is used to mesh the mesenchyme vol-
ume and Meshfix [1] is used to repair the mesh when required. Figure 2 shows
the result of typical simulation. The same striking features are obtained: the
initial single tube undergoes repeated branching, with branches diameters
distributed around a typical value. Branches are self-avoiding and do not
reach the mesothelium (not displayed). Only a few runs were performed in
3D due to important computation times.

Calculations

In this section we provide details concerning the calculations leading to Eq.3
and Eq.4 of the paper. To understand the local dynamics of an epithelial tip
(radius of curvature Re) at distance d from mesothelium (radius of curvature
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Figure 2: Result of a 3D simulation. Only the epithelium is displayed. Re-
sults suggest that the mechanisms are qualitatively similar in 2D and in 3D.

Rm), we first need to calculate the solution of Laplace equation between two
non-concentric circles of radii Re and Rm. The difference of concentration
from mesothelium to epithelium is δc, and we define the eccentricity e as
e = Rm − Re − d. First, the concentric solution at radius Re < r < Rm is
obtained easily and writes:

c(r) =
δc

ln(Rm/Re)
ln(r/Re) (3)

The non-concentric solution can be obtained thanks to a conformal map-
ping that projects the non-centered circle on a centered one, and leaves the
exterior circle unchanged:

u(z) =
R2

m(z − b)

R2
m − bz

(4)

The non-concentric solution then reads:

c(x, y) = δc

(

1 + α ln

(

R2

m

(x− b)2 + y2

(R2
m − bx)2 + (by)2

))

(5)
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with parameter b:

b =
1

2e

(

(R2

m −R2

e + e2)±
√

(R2
m −R2

e + e2)2 − (2eRm)2
)

, (6)

and α :

α =

(

ln

(

b(R2

m − eb)

R2
m(b− e)

))

−1

(7)

We are interested in the gradient of concentration on the epithelium and
on the mesothelium. They can be derived easily from the expression of the
concentration, and rewritten in terms of the angle θ (with θ = 0 at the
tip). For each interface, the angle is defined regarding the center of the
corresponding circle. For small values of θ, we have:

{

(∇c)epi = ae + be θ
2

(∇c)meso = am + bm θ2
(8)

with

ae =
2αδc(R2

m − b2)

(Re − b+ e)(R2
m − bRe − be)

(9)

be = ae
Re(b− e)(R2

m − bRe − be)2 + bRe(Re − b+ e)2(R2

m − be)

2(Re − b+ e)2(R2
m − bRe − be)2

(10)

am =
2αδc(Rm + b)

Rm(Rm − b)
(11)

bm = am
bRm

(Rm − b)2
(12)

Like in the simulations, we implement growth as follows:

{

ue(θ) = f((∇c)epi)

um(θ) = (1 + g) f((∇c)meso)
(13)

As it depends on the angle θ, growth modifies the radii of curvature Re

and Rm, and consequently the eccentricity e (and distance d). This leads to
the final system (used in the section ”Epithelium to mesothelium distance”
of the paper):
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Ṙe = f(ae)− 2bef
′(ae)

Ṙm = (1 + g) [f(am)− 2bmf
′(am)]

ḋ = (1 + g) f(am)− f(ae)

(14)
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