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Abstract

Electrokinetics-induced motion and deformation diygerelastic particle confined in a slit
microchannel has been numerically investigatedHferfirst time with a full consideration of the
fluid-particle-electric field interactions and tlkelectrophoretic (DEP) effect. When the initial
orientation of a cylindrical particle with respect the applied electric fieldgy, is 9C, the
particle tends to curl up as a “C” shape when mgvnom left to right. The electrokinetics-
induced particle deformation is due to the joirfeefs of the shear force arising from the non-
uniform Smoluchowski slip velocity on the partiderface, and the asymmetric DEP force with
respect to the center of the deformed particlerayisom the spatially non-uniform electric field
surrounding the particle. The electrokinetics-iretliparticle deformation is opposite to that of a
particle moving in the same direction subjectedatpressure-driven flow. When the initial
particle orientation is 0 €< 90, a net torque arising from the DEP effect proguesbg rotates
and aligns the particle with its longest axis datab the applied electric field, thus decreasing
the non-uniformity of the electric field and accogly the particle deformation. The numerical
predictions are in qualitative agreement with orgvppus experimental observation. The results
show that the DEP effect is significant and musttdleen into account in the modeling of
electrokinetic motion of a deformable particle ircrofluidics.



1. Introduction

Electrokinetic particle motion refers to the migoat of charged particles suspended in
agueous solutions subjected to externally appliedtrc fields. It is derived from the interplay
between the applied electric field and the net gbsron the particle surface and within the
electrical double layer (EDL) formed adjacent tee tbharged surface. The electrokinetic
phenomena have been widely used to transport anguoiate colloidal particles and biological
cells in lab-on-a-chip devices using electric feeld-3]. Extensive theoretical analyses [4-12]
and experimental studies [13-20] have been perfdrow the electrokinetic motion of rigid
particles in micro/nanofluidics.

Recently, there has been a growing interest inygstgdthe deformation of soft particles in
microfluidics. Risscet al. [21] experimentally studied the deformation ofia-artificial capsule
subjected to a pressure-driven flow in a conficbdnnel. It has been also known that the
deformability of red blood cell (RBC) is associatedh its health status [22]. Abkariaat al.
[23-24] experimentally observed the alterationsleformability between healthy and unhealthy
RBC in a microchannel. Later, the deformation ofGR8ubjected to pressure-driven flows in a
microchannel has been comprehensively studied 725Recently, Chewt al. [28] fabricated a
lab-on-a-chip device with a capillary network tadst the RBC hydrodynamics. All of the above
efforts aim to develop a practical lab-on-a-chipide capable of RBC deformability diagnosis
in clinical applications. In addition to the rapidincreasing experimental studies on the
deformation of soft biological particles, greatéfiods have also been made on the development
of modeling tools to simulate particle deformatisubject to pressure-driven or shear-driven
flows [29-34]. Up till now, very little attentionds been paid to the particle deformation in
electrokinetics-based microfluidic devices. Regenthn den Heuvegt al. [35] experimentally
studied electrophoretic motions of semi-flexible+dke microtubules in a microfluidic channel,
and found that microtubules are either alignechtodlectric field imposed or deformed into U-
shapes when they are perpendicular to the eldate: In addition, the deformed microtubules
relax to its initially undeformed shape when thepased electric field is turned off, which
confirms that the electrokinetic effect is respofesifor the deformation of the flexible
microtubules. Swaminatharet al. [36] numerically studied the electrokinetics-inddc
deformation of a long elastic particle suspendednirunbounded medium. Confinement of the
particle in a microchannel, as well as the dietgdtoretic (DEP) effect arising from the
interaction between the dielectric particle and fpatially non-uniform electric field, were
neglected in the aforementioned study. However, m@vious studies clearly revealed the
important role played by the DEP effect in the #&ld@dnetic motion of rigid particles in
microfluidics [37-42].

In this paper, a numerical model is developed touianeously solve the electric field,
hydrodynamic field, and dynamics of a deformabletiple using an arbitrary Lagrangian-
Eulerian (ALE) method, which is regarded as onthefmost efficient computational approaches
to deal with moving boundaries in the computatioth@ainain [43-44]. The proposed numerical
model without considering the particle deformatiaas already been successfully implemented
to simulate the pressure-driven [45] and electretken motion [37-41] of rigid particles in
microchannels, indicating good agreements with empntal results. In contrast to the previous
study by Swaminathaet al.[36], we investigate for the first time the DEReet on the transient
electrokinetic motion of a deformable particle ic@fined microchannel with emphasis on the
electrokinetics-induced particle deformation.
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2. Mathematical Modd

Consider a two-dimensional (2D) incompressible hglaestic particle, with homogeneous
properties suspended in an incompressible Newtdhiah domainQ; with densityp, dynamic
viscosity 1, and permittivitye;, which is further confined by two parallel rigidalis with a
distance ofl, as shown in Figure 1. The dielectric cylindripalticle of length_, is capped with
two hemispheres of radiasat both ends. Initially, the center of mass of pheticle is located at
(%00, Ypo), and the longest axis of the particle presentarayied,o counterclockwise with respect
to the centerline of the microchannel. A potentlidference is externally applied across both
ends of the fluid domain, generating an electrieldfi E, and simultaneously inducing
electrokinetic particle motion inside the microchah

The thickness of the EDL formed adjacent to thaergld surface is on the order of several
nanometers, which is much smaller than the partedius and the width of the microchannel.
As a result, a thin EDL approximation is adoptedha present study, which renders a zero net
charge density in the fluid domaik[4]. The good agreements between the experimesdalts
and numerical predictions on electrokinetic motadrrigid particles in microchannels using the
thin EDL approximation [37-41] further confirm thile thin EDL approximation is appropriate
in many microfluidic applications. Liu et al [51]sed three different models: the
Smoluchowski’s slip velocity (the thin EDL approxation model without considering the EDL),
the Poisson-Boltzmann model (considering equilrilEDL), and the multi-ion model
(accounting for EDL polarization), to investigate cglindrical nanoparticle electrophoretic
translation through a nanopore, and found thatptieglictions of the three models are in good
agreement when the EDL is thin. Therefore, the Bl approximation is appropriate for the
conditions described in this paper.

Under thin EDL approximation, the electrical potahpsatisfies the Laplace equation

D’¢=0 inQ,. (1)
The potential difference between the inlet andotimget is imposed as
=0 onAB, (2)
and
p=¢ onCD. (3)
All the other boundaries are electrically insulgtin
n,*Op=0 onBC, AD, and , (4)

wherens is the unit normal vector directed from the copasling boundary into the fluid in the
2D spatial framex, y) with its origin fixed at the center of the michaanel.

As the Reynolds number of the electrokinetic floav microfluidics is very small (i.e.,
typically less than 0.01), the inertia terms in M&vier-Stokes equations are neglected and the
fluid motion is modeled by the continuity equatemd the Stokes equations, given as

Oeu=0 inQ,, (5)
and
ou _ 2 :
pi5 =P+ Py inQy, (6)
whereu is the fluid velocity vector angd is the pressure.

A normal flow with zero pressure is specified & ttwvo openings of the fluid domade. If

the rigid walls are charged, an electroosmotic fl@ODF) is generated next to the charged
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boundary, which is approximated by the Smoluchowetiki velocity in the present study owing
to the thin EDL. As a result, the EOF fluid velgoitn the rigid walls is described as

&4,
u:fw

(I-nn)eO¢ onBC and AL, (7)

where(, is the zeta potential of the rigid wall ahds the second-order unit tensor. The quantity
(I —nn) e Og defines the electric field tangential to the cleargurface. The fluid velocity on the
particle surface consists of the Smoluchowski siocity arising from the particle’s surface
charge and the velocity related to the particle @moent, given as

uzgf—z"(l—nn)-D¢+a—W onl . (8)
M ot

In the above(, is the zeta potential of the particle, amds the displacement of the deformable
particle which is governed by

0°w

pp atZ
wherep, is the density of the deformable particle ad) is the Cauchy stress of the solid phase
as a function of the displacement.
We consider the hyperelastic particle as an incesgible Neo-Hookean material, which is

described using the following strain energy densityction [34, 46]

_Go, _
=2 (1c-3). (10)

~O+(s(w))=0 inQ,, (9)

In the aboveGy is the shear modulus of the hyperelastic partieid | =tr(C)is the first

invariant of the right Cauchy-Green tens@r=F'F, whereF =0, w+I is the deformation

gradient tensor witkX denoting the reference position. The correspon@agchy stress of the
Neo-Hookean material is expressed as

o(w) =J'PF", (11)
whereld is the determinant of the deformation gradiensoejF, andJ =1 for an incompressible

Neo-Hookean materialP = oW is the first Piola-Kirchhoff stress.

U,w
The traction force on the particle-fluid interfasecontinuous, written as
G(w)onpchonf+chnf, (12)

where n, is the unit normal vector directed from the paetisurface into the fluid in the
reference frame,s, =—pl +,u(Du +DuT) ando, = stE—%sf (E+ E)I are, respectively, the

hydrodynamic stress tensor and the Maxwell stierssot.
3. Numerical Implementation and Code Validation

The strongly coupled governing equations are sobasskd on the ALE method, in which the
particle movement and deformation are tracked iragrangian manner and the fluid flow and
the electric field are simultaneously solved inEarlerian framework. Detailed implementation
of this numerical technique on the simulation oftigle motion in viscous fluids was first
introduced by Huet al[43-44] In the present study, a commercial finilergent package
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COMSOL (version 3.5a,www.comsol.cormp operated with MATLAB (version 2009a,
www.mathworks.comin a high-performance cluster is exploited to iamneously solve the
particle-fluid-electric field coupled system usitite ALE method. The computational domain
consisting of the fluid domai®: and the particle domaif, (Figure 1) is discretized using
guadratic triangular elements to satisfy the movingsh requirement. A denser mesh is
designated surrounding the particle to ensureath#tte obtained results are fully converged and
mesh-independent.

Without solving the solid phase, the developed Atdehnique has been successfully
employed to simulate the pressure-driven motiongdl particles in a cylindrical channel [47]
and a converging-diverging microchannel [45], whioblicate, respectively, good agreements
with analytical solutions and experimental dataadidition, the electrokinetic motions of rigid
particles in microchannels [37-41] and nanopor&} fiave been comprehensively studied using
the ALE technique, which reveals that the DEP ¢ffeast be taken into account in the modeling
of electrokinetic motion of rigid particles in maftuidic devices.

In order to validate the present numerical model deformable particles, we previously
reproduced the deformation of a RBC under the stgemerated by optical tweezers [49]. The
prediction was in good agreement with the experialetdate of Millset al.[50]. In addition, we
simulate the deformation of a circular particle jsoked to a shear-driven flow, which is
compared to Gao and Hu’s [32] numerical resultaioled by their own ALE code. It is found
that the circular particle is deformed to a perfellipse when the inertial force is negligible
under very low Reynolds number. Figure 2 showsstnetch ratio of a circular particle as a
function of the capillary number, which indicatesgaod agreement between our numerical
results and Gao and Hu's results [32]. Here, theetdt ratio is defined as
D =(D,-D,)/(D,+D,), whereD; andD, are, respectively, the lengths of the major axid a

the minor axis of the deformed ellipse. The capjllaumber is defined a8a= uy/G, , wherey

is the shear rate of the flow. We further verife thalidity of the present numerical model to
simulate the electrokinetic motion of a deformgtéeticle in a microchannel. Here, we consider
a circular particle translating along the centerlaf a slit channel and assume the shear modulus
of the patrticle is very largeGp = 337 Pa) which refers to a rigid particle. Fig@reshows the
dimensionless particle velocity normalized by |E /u as a function of the ratio of the particle
diameter to the height of the microchannel. Ithewn that the numerical results obtained by the

present numerical model for deformable particleso alecover the predictions obtained by
previous numerical models for the limiting caseigid particles [37-41].

4. Resultsand Discussion

The physical properties of the aqueous solutiord usethe present study include the fluid
density,pr = pp = 1x10 kg/n?’, the fluid viscosityu = 1x10° Pas and the fluid permittivitys; =
7.08x10"° F/m. The particle of radius = 1 um and length_, = 12 um is initially positioned at
(Xp0: Ypo) = (=20 um, 0). The length of the slit channelliss 100um and the channel is assumed
to be uncharged without further specification. Plagticle is always moving from left to right in
the present study. In the following, the importarafethe DEP effect is first demonstrated.
Subsequently, the effects due to the shear modaridsthe zeta potential of the particle, the
applied electric field, and the solid boundary ba particle deformation are investigated.

4.1 The Effect of DEP



We assume the initial particle orientation withpest to the centerline of the microchannel is
Opo = 60°. The externally applied electric field, treta potential of the particle, and the height of
the microchannel are, respectively= 10 KV/m,, =-50 mV andd = 50 um. Figure 4 shows
the dynamics of a hyperelastic particle wiig= 25 Pa (Figures 4a and 4@, = 50 Pa (Figures
4b and 4e) anG, = 500 Pa (Figures 4c and 4f) at seven differené tsteps (from left to right):
=0, 12, 24, 36, 48, 72 and 100 ms. The left (anld, c) and right (d, e, and f) columns in Figure
4 are the results obtained by the model with arthout considering the DEP effect. When the
DEP effect is not considered, the second terphn, , on the right-hand-side of equation (12) is

dropped. For the low shear modulus@f = 25 Pa (Figures 4a and 4d), the particle deforms
significantly at the beginning & 12 ms). In the absence of the DEP effect (Figldg the
particle remains curved while translating. Howeweth the DEP effect (Figure 4a), the particle
rotates clockwise due to a net torque, causinglignraent to the external electric field. This
DEP particle alignment phenomenon has been expetaite observed in our previous study
and also predicted using the numerical model fyidrcylindrical particles [37]. In addition, van
den Heuvekt al. [35] also experimentally observed the DEP alignioémod-like microtubules.
Interestingly, the particle deformation decreasesing the alignment process, which is
attributed to the decrease in the non-uniformityhef electric field on the particle surface. As the
shear modulus increases, the particle becomes mgid which in turn decreases the
deformation, as shown in Figure 4b. Figure 4c destrates that the particle with, = 500 Pa
can be regarded as a rigid particle. However, the Particle alignments predicted in Figures 4a,
4b and 4c almost follow the same tendency. When¢ha o.[h, is removed from the right-

hand-side of equation (12) to neglect the DEP gftae particle alignment to the applied electric
field by rotation is not reflected in Figures 4@ dr 4f. Thus, the DEP effect is responsible for
the DEP particle alignment by rotation and consattedaxation of particle deformation.

If the initial particle orientation with respecttioe centerline of the microchannebjg = 90°,
the torque acting on the particle is zero becatfise symmetric distribution of the DEP force on
the particle surface with respect to the centertihéghe microchannel. As a result, the particle
cannot be aligned to the external electric fielthé singular initial orientation in the absende o
any perturbation. Figure 5a shows the equilibriamtiple shape whek = 20 KV/m, Gy = 25
Pa,{, = -50 mV andd = 50 um. When the particle moves from left to right, @guilibrium
deformation is in a “C” shape, which is symmetrigthwvrespect to the centerline of the
microchannel. This prediction is very similar t@ thumerical result obtained by Swaminatlean
al. [36] without considering the DEP effect. Howeve€igure 5a also demonstrates that the
particle deformation with considering the DEP efffex more significant than that without
considering DEP effect. At the beginning, the disttion of the DEP force on the particle
surface is symmetric with respect to the centethef undeformed particle, which does not
contribute to the particle deformation. As the jgéetcurls up due to a higher Smoluchowski slip
velocity at the two ends of the patrticle, the eledield around the particle becomes asymmetric
with respect to the center of the deformed partiélecordingly, the distribution of the DEP
force on the particle surface becomes asymmetrib vaspect to the center of the deformed
particle, as shown in Figure 5b. This DEP effecthfer aids the particle deformation. Therefore,
the particle deformation is mainly due to the idmly non-uniform Smoluchowski slip velocity
on the patrticle surface and also the induced asyriami2EP force with respect to the center of
the deformed particle.



Figure 6 shows the effect of the applied eleciatdfon the steady averaged particle velocity
in thex direction normalized by, = £,{ ,E/u whenGo = 25 Paf = 90°,{, = -50 mV andd

= 50 um. When the patrticle reaches its equilibrium stasesteady averaged particle velocity in
thex direction is defined as

| M, 40
_° ot

" fudo,
wherew, is the particle displacement in tRelirection. The DEP effect is relatively weak when
the applied electric field is relatively low. Hendbe averaged particle velocity with considering
the DEP is very close to that without considerimg DEP when the applied electric fieldds 5
KV/m. However, the DEP effect is proportional te@ thquare of the electric field strength. As the
electric field increases, the averaged particleaigl with considering the DEP significantly
deviates from that without considering the DEP.tAs net DEP force is directed toward the
negativex direction, the DEP effect tends to slow down thgiple motion, as shown in Figure 6.
The DEP effect plays an important role in the pétdeformation and the particle mobility. As a
result, the DEP effect must be taken into acconnthe modeling of electrokinetic motion of
deformable particles in microfluidics, and is tlmasmsidered in all the following simulations.

4.2 The Effect of the Shear M odulus of the Particle

As indicated in Figure 4, the particle deformatiocreases as the shear modulus of the
particle decreases. However, the particle defoonadiecreases owing to the particle alignment
to the electric field. To assess the influence BPOorce on particle deformation without particle
rotation and alignment, we set the initial partioléentation tof,o = 90° and investigate the
effect of the shear modulus of the particle ondiéggormation. Figure 7 shows the transient
deformation of a hyperelastic particle wher 10 KV/m,{, = =50 mV,d = 50pum, Go = 12.5 Pa
(Figure 7a)Go = 25 Pa (Figure 7b¥3o = 50 Pa (Figure 7c) ard, = 100 Pa (Figure 7d). As the
electric field near the two ends of the particldigher than that in the other regions, the non-
uniform Smoluchowski slip velocity on the partiderface thus generates a larger shear force at
the two ends of the particle, which tends to cyritle particle to a “C” shape as it moves from
left to right. As mentioned earlier in Figure 5etEP effect also enhances the particle
deformation. Obviously, a smaller shear modulusliespa softer particle, which is easier to
deform, as shown in Figure 7.

4.3 The Effect of the Applied Electric Field

The externally applied electric field can effectivehange the Smoluchowski slip velocity
on the particle surface and also the DEP forcengatin the particle, which in turn affects the
particle deformation. Figure 8 shows the transaeformation of a hyperelastic particle under
two different electric field€ = 20 KV/m (Figure 8a) an& = 30 KV/m (Figure 8b) whefg, =
25 Pa,fpo = 90°,{p, =50 mV andd = 50um. Clearly, the equilibrium particle shape wHer
10 KV/m (Figure 7b) is less deformed than the aafsEe = 20 KV/m (Figure 8a), which is less
deformed than the case Bf= 30 KV/m (Figure 8b). Therefore, control of theternal electric
field is a very efficient way to manipulate the fpade deformation.

Fluid-structure interaction is a two-way couplingplplem. Hence, the particle deformation
also significantly affects the flow field aroundetiparticle. Figure 9 illustrates the evolution of

, (13)
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the flow field around the particle whénh= 20 KV/m, Gy = 25 Pafyo = 90°,{, =-50 mV andd
= 50 um. Under the joint effects of the particle movemantl the EOF in the vicinity of the
charged particle, a vortex is induced at either ehthe particle as shown in Figure 9a. As the
particle curls up, the two ends of the particlerapph each other, which in turn brings the two
vortices closer to each other as depicted in Fgg@ke 9¢ and 9d. The fluid outside the induced
vortex moves very slowly in the direction opposadehe particle movement. This is attributed to
the EOF induced by the surface charge of the peurtic

We further investigate the effect of the electrield on the particle behavior when the
particle is not initially placed perpendicular teetcenterline of the microchannel. In such case,
the particle alignment to the applied electricdiahd possible relaxation of particle deformation
come into play. Figure 10 shows the transient bieinasf a hyperelastic particle under two
different electric field€ = 20 KV/m (Figure 10a) andl = 30 KV/m (Figure 10b) whe, = 50
Pa,f,0 = 60°,{, =—50 mV andd = 50um. Note that the same case under 10 KV/m is shown
in Figure 4b. A higher electric field leads to glier Smoluchowski slip velocity at the two ends
of the particle, which accordingly induces a largerticle deformation at the beginning.
Subsequently, the particle is aligned to the dledield due to the DEP effect which increases
with the electric field. Figure 10 demonstrated tin&igher electric field leads to a faster pagticl
alignment, which has also been observed in ouriguevexperimental study [37]. When the
particle becomes nearly parallel to the appliedtatefield, the particle deformation is almost
eliminated.

4.4 The Effect of the Zeta Potential of the Particle

Figure 11 shows the effect of the zeta potentialhef particle on the particle deformation
whenE = 20 KV/m, Gy = 25 Pafyo = 90° andd = 50 um. In order to compare the equilibrium
particle shapes at approximately the same locatnaler different zeta potentials, the time step is
accordingly scaled based on the magnitude of the petential of the particle. It is shown in
equation (8) that the Smoluchowski slip velocitypreportional to the applied electric field and
also the zeta potential of the particle. Therefardiigher zeta potential leads to a larger non-
uniformity of the Smoluchowski slip velocity on tiparticle surface, which in turn increases the
particle deformation. It should be noticed that dtectrokinetics-induced particle deformation is
totally different from that subjected to a pressdr@en flow. According to the experimental
observations [23-24], the present cylindrical mdetisubjected to a pressure-driven flow is
expected to curl up as a horizontally reversedskdpe when it moves from left to right.

4.5 The Effect of the Rigid Channel Boundary

Figure 12 shows the boundary effect on the partiefermation whee = 10 KV/m, Gy = 25
Pa,tp0 = 90°,{, =-50 mV andt = 50 ms. When the distance between the rigid veatseases,
the electric field between the particle and thé&rigall is enhanced, which in turn increases the
Smoluchowski slip velocity on the particle surfaées. a result, the particle deformation slightly
increases when the boundary effect becomes morepnoced. However, the particle velocity
decreases mainly due to the increasing wall retamdaffect arising from the stationary rigid
boundary.

In all of the above results, the zeta potentiathaf rigid wall is{, = 0. In order to clearly
assess the effects of charged walls, we considas@when the zeta potential of the particle and
the rigid wall are, respectively, = 0 and{, = 50 mV, and keep all the other conditions in
Figure 12 unchanged. In this case, the particlaanas driven by the EOF originating from the
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channel walls. As the velocity profile of EOF isugilike, the flow field around the particle
suspended in an unbounded domain is uniform, wikicimable to induce particle deformation. It
is indeed found that the particle does not deforhemd = 50 pm and 40um, where the
boundary effect is very small. As the distance leetwthe two rigid walls further decreasesl to
= 30um and 2Qum, the confinement effect increases and the parsiErts to deform. However,
the particle deformation is still much smaller ththnse shown in Figure 12. Thus, the effect of
EOF in a charged confined channel on particle deddtion can be largely neglected in
comparison to the effects of particle electrophisres

5. Concluding Remarks

We have developed a numerical model to study tleetrelkinetic motion of a 2D
hyperelastic particle, focusing on the electrokogeinduced particle deformation in a confined
microchannel. The inertial force is negligible do@ a very low Reynolds number in
microfluidics. The shear force arising from the aonform Smoluchowski slip velocity on the
particle surface is responsible for the electrok@seinduced particle deformation. Furthermore,
the asymmetric DEP force with respect to the ceotehe deformed particle also enhances the
particle deformation when symmetries of the pagtfmlevent its rotation.

When the cylindrical particle is initially perpendiar to the applied electric field, it curls up
like a “C” shape as it moves from left to right.elblectrokinetics-induced particle deformation
is opposite to the particle deformation subjectedatpressure-driven flow when the particle
moves in the same direction. A particle with a $emahear modulus is softer, which is easier to
deform. Also, the applied electric field, the zptential of the particle and the boundary effect
play an important role in the particle deformatiblawever, the plug-like EOF arising from the
charged channel walls indicates a minor effecthenpgarticle deformation. When the cylindrical
particle is not initially perpendicular to the ajepl electric field, the DEP effect progressively
aligns the particle with its longest axis paraltethe applied electric field. Furthermore, a highe
electric field leads to a faster particle alignmemiiich is in good agreement with our previous
experimental study [37]. Interestingly, the pa#ielignment decreases the particle deformation
because of a higher uniformity of the electricdieThe developed numerical model may prove
useful in understanding and controlling the elddtretics-induced deformation of biological
cells, for example RBC, in microfluidics.
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Figure 1 Schematics of the electrokinetic motiom afeformable cylindrical particle in a straight
microchannel.
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Figure 2 Stretch ratio of a circular particle sulgel to a shear-driven flow as a function of
capillary number. Circles and crosses respresespectively, our numerical results and the
results obtained by Gao and Hu [27]. The inset metieally illustrates the deformation of the
circular particle into an ellipse.
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Figure 3 Dimensionless translational velocity noineal by £, E/u of a circular particle

translating along the centerline of a slit micraulm@ as a function of the ratio of the particle

diameter to the height of the microchannel. Saiid land circles represent, respectively, the
results obtained by the model for a rigid partetel the present model for a deformable particle
with a very high shear modulus. The ratio of thiazmtential of the microchannel to that of the

particle is 0.375.
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Figure 4 Dynamics of a hyperelastic particle wiBgr= 25 Pa (a and df;, = 50 Pa (b and e) and
Go = 500 Pa (c and f) at seven different time stéms( left to right):t = 0, 12, 24, 36, 48, 72
and 100 ms. The results in (a, b and c¢) and (@nef) are, respectively, obtained by the models
with and without considering the DEP effeEt= 10 KV/m, 8, = 60°,{, =-50 mV andd = 50
um.
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Figure 5 (a) Equilibrium shape of a hyperelastitipe whenE = 20 KV/m, Gy = 25 Pafpo =
90°, ¢, = =50 mV andd = 50 um. Solid line and circles represent, respectivétg results
obtained by the models with and without considering DEP effect. (b) Distribution of the
electric field around the deformed particle. Théocdevels denote the magnitude of the electric
field strength and the arrows on the particle sigfadicate the distribution of the DEP force.
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Figure 6 Steady averaged particle velocity inxtdirection normalized by, =¢.{ E/u as a

function of the applied electric field whédy = 25 Pafpo = 90°,{, = -50 mV andd = 50 pm.
Solid line with circles and dashed line with sq@arepresent, respectively, the results obtained
by the models with and without considering the Giect.
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Figure 7 Deformation of a hyperelastic particle wi = 12.5 Pa (a)5o = 25 Pa (b)Go = 50
Pa (c) and5p = 100 Pa (d) at six different time steps (from tefright):t = 0, 4, 8, 16, 24 and 32
ms.E = 10 KV/m,f,0= 90°,{, =-50 mV andd = 50 um.
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Figure 8 Deformation of a hyperelastic particle whe= 20 KV/m (a) and = 30 KV/m (b) at
six different time steps (from left to right)= 0, 2, 4, 8, 12 and 16 ms (a) a0, 1.33, 2.67,
5.33, 8 and 10.67 ms (o = 25 Pafpo = 90°,{, =-50 mV andd = 50um.
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Figure 9 Flow field around a hyperelastic partiateé = 1 ms (a), 2 ms (b), 4 ms (c) and 12 ms
(d) whenE = 20 KV/m, Gy = 25 Pafy = 90°,{, = -50 mV andd = 50 um. The color levels
denote thex-component flow velocity and the streamlines wittows indicate the flow field.
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Figure 10 Dynamics of a hyperelastic particle whken20 KV/m (a) and = 30 KV/m (b) at six
different time steps (from left to right)= 0, 6, 12, 18, 24, 36 and 50 ms{&) 0, 4, 8, 12, 16,
24 and 33.3 m<50 = 50 Pafpo = 60°,{, =—-50 mV andd = 50 pum.
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Figure 11 Equilibrium shape of a hyperelastic gétivhenE = 20 KV/m,Go = 25 Pafpo = 90°
andd = 50um. Solid line, circles and crosses denote, respagtithe equilibrium particle shape
when, =-50 mV ¢ = 16 ms)-25 mV ¢ = 32 ms) and-10 mV ¢ = 80 ms).
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Figure 12 Equilibrium shape of a hyperelastic gé&tivhenE = 10 KV/m,Go = 25 Pafpo = 90°
crosses and diamondwtke respectively, the equilibrium

and(, =-50 mV. Solid line, circles

particle shape wheth

50, 40, 30 and 2(m.
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