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Abstract 

Electrokinetics-induced motion and deformation of a hyperelastic particle confined in a slit 
microchannel has been numerically investigated for the first time with a full consideration of the 
fluid-particle-electric field interactions and the dielectrophoretic (DEP) effect. When the initial 
orientation of a cylindrical particle with respect to the applied electric field, θp0, is 90o, the 
particle tends to curl up as a “C” shape when moving from left to right. The electrokinetics-
induced particle deformation is due to the joint effects of the shear force arising from the non-
uniform Smoluchowski slip velocity on the particle surface, and the asymmetric DEP force with 
respect to the center of the deformed particle arising from the spatially non-uniform electric field 
surrounding the particle. The electrokinetics-induced particle deformation is opposite to that of a 
particle moving in the same direction subjected to a pressure-driven flow. When the initial 
particle orientation is 0 < θp0 < 90o, a net torque arising from the DEP effect progressively rotates 
and aligns the particle with its longest axis parallel to the applied electric field, thus decreasing 
the non-uniformity of the electric field and accordingly the particle deformation. The numerical 
predictions are in qualitative agreement with our previous experimental observation. The results 
show that the DEP effect is significant and must be taken into account in the modeling of 
electrokinetic motion of a deformable particle in microfluidics. 
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1.  Introduction 

Electrokinetic particle motion refers to the migration of charged particles suspended in 
aqueous solutions subjected to externally applied electric fields. It is derived from the interplay 
between the applied electric field and the net charges on the particle surface and within the 
electrical double layer (EDL) formed adjacent to the charged surface. The electrokinetic 
phenomena have been widely used to transport and manipulate colloidal particles and biological 
cells in lab-on-a-chip devices using electric fields [1-3]. Extensive theoretical analyses [4-12] 
and experimental studies [13-20] have been performed on the electrokinetic motion of rigid 
particles in micro/nanofluidics. 

Recently, there has been a growing interest in studying the deformation of soft particles in 
microfluidics. Risso et al. [21] experimentally studied the deformation of a bio-artificial capsule 
subjected to  a pressure-driven flow in a confined channel. It has been also known that the 
deformability of red blood cell (RBC) is associated with its health status [22]. Abkarian et al. 
[23-24] experimentally observed the alterations of deformability between healthy and unhealthy 
RBC in a microchannel. Later, the deformation of RBC subjected to pressure-driven flows in a 
microchannel has been comprehensively studied [25-27]. Recently, Chen et al. [28] fabricated a 
lab-on-a-chip device with a capillary network to study the RBC hydrodynamics. All of the above 
efforts aim to develop a practical lab-on-a-chip device capable of RBC deformability diagnosis 
in clinical applications. In addition to the rapidly increasing experimental studies on the 
deformation of soft biological particles, greater efforts have also been made on the development 
of modeling tools to simulate particle deformation subject to pressure-driven or shear-driven 
flows [29-34]. Up till now, very little attention has been paid to the particle deformation in 
electrokinetics-based microfluidic devices. Recently, van den Heuvel et al. [35] experimentally 
studied electrophoretic motions of semi-flexible rod-like microtubules in a microfluidic channel, 
and found that microtubules are either aligned to the electric field imposed or deformed into U-
shapes when they are perpendicular to the electric field. In addition, the deformed microtubules 
relax to its initially undeformed shape when the imposed electric field is turned off, which 
confirms that the electrokinetic effect is responsible for the deformation of the flexible 
microtubules. Swaminathan et al. [36] numerically studied the electrokinetics-induced 
deformation of a long elastic particle suspended in an unbounded medium. Confinement of the 
particle in a microchannel, as well as the dielectrophoretic (DEP) effect arising from the 
interaction between the dielectric particle and the spatially non-uniform electric field, were 
neglected in the aforementioned study. However, our previous studies clearly revealed the 
important role played by the DEP effect in the electrokinetic motion of rigid particles in 
microfluidics [37-42].  

In this paper, a numerical model is developed to simultaneously solve the electric field, 
hydrodynamic field, and dynamics of a deformable particle using an arbitrary Lagrangian-
Eulerian (ALE) method, which is regarded as one of the most efficient computational approaches 
to deal with moving boundaries in the computational domain [43-44]. The proposed numerical 
model without considering the particle deformation has already been successfully implemented 
to simulate the pressure-driven [45] and electrokinetic motion [37-41] of rigid particles in 
microchannels, indicating good agreements with experimental results. In contrast to the previous 
study by Swaminathan et al. [36], we investigate for the first time the DEP effect on the transient 
electrokinetic motion of a deformable particle in a confined microchannel with emphasis on the 
electrokinetics-induced particle deformation.  
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2.  Mathematical Model 

Consider a two-dimensional (2D) incompressible hyperelastic particle Ωp with homogeneous 
properties suspended in an incompressible Newtonian fluid domain Ωf with density ρf, dynamic 
viscosity µ, and permittivity εf, which is further confined by two parallel rigid walls with a 
distance of d, as shown in Figure 1. The dielectric cylindrical particle of length Lp is capped with 
two hemispheres of radius a at both ends. Initially, the center of mass of the particle is located at 
(xp0, yp0), and the longest axis of the particle presents an angle θp0 counterclockwise with respect 
to the centerline of the microchannel. A potential difference is externally applied across both 
ends of the fluid domain, generating an electric field, E, and simultaneously inducing 
electrokinetic particle motion inside the microchannel. 

 The thickness of the EDL formed adjacent to the charged surface is on the order of several 
nanometers, which is much smaller than the particle radius and the width of the microchannel. 
As a result, a thin EDL approximation is adopted in the present study, which renders a zero net 
charge density in the fluid domain Ωf [4]. The good agreements between the experimental results 
and numerical predictions on electrokinetic motion of rigid particles in microchannels using the 
thin EDL approximation [37-41]  further confirm that the thin EDL approximation is appropriate 
in many microfluidic applications. Liu et al [51] used three different models: the 
Smoluchowski’s slip velocity (the thin EDL approximation model without considering the EDL), 
the Poisson-Boltzmann model (considering equilibrium EDL), and the multi-ion model 
(accounting for EDL polarization), to investigate a cylindrical nanoparticle electrophoretic 
translation through a nanopore, and found that the predictions of the three models are in good 
agreement when the EDL is thin. Therefore, the thin EDL approximation is appropriate for the 
conditions described in this paper.    

Under thin EDL approximation, the electrical potential φ satisfies the Laplace equation 
 2 0 in fφ∇ = Ω . (1) 

The potential difference between the inlet and the outlet is imposed as 
 ABon0=φ , (2) 

and 
 CDon0φφ = . (3) 

All the other boundaries are electrically insulating, 
 0 on BC, AD, and f φ•∇ = Γn , (4) 

where nf is the unit normal vector directed from the corresponding boundary into the fluid in the 
2D spatial frame (x, y) with its origin fixed at the center of the microchannel. 

As the Reynolds number of the electrokinetic flow in microfluidics is very small (i.e., 
typically less than 0.01), the inertia terms in the Navier-Stokes equations are neglected and the 
fluid motion is modeled by the continuity equation and the Stokes equations, given as 

 0 in f∇ • = Ωu , (5) 

and 

 2 in f fp
t

ρ µ∂ = −∇ + ∇ Ω
∂
u

u , (6) 

where u is the fluid velocity vector and p is the pressure. 
A normal flow with zero pressure is specified at the two openings of the fluid domain Ωf. If 

the rigid walls are charged, an electroosmotic flow (EOF) is generated next to the charged 
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boundary, which is approximated by the Smoluchowski slip velocity in the present study owing 
to the thin EDL. As a result, the EOF fluid velocity on the rigid walls is described as 

 ( ) on BC and ADf wε ζ
φ

µ
= − •∇u I nn , (7) 

where ζw is the zeta potential of the rigid wall and I is the second-order unit tensor. The quantity 
( ) φ− • ∇I nn  defines the electric field tangential to the charged surface. The fluid velocity on the 
particle surface consists of the Smoluchowski slip velocity arising from the particle’s surface 
charge and the velocity related to the particle movement, given as 

 ( ) on f p

t

ε ζ
φ

µ
∂= − •∇ + Γ
∂
w

u I nn . (8) 

In the above, ζp is the zeta potential of the particle, and w is the displacement of the deformable 
particle which is governed by 

 
2

2
( ( )) 0 in p pt

ρ ∂ −∇• = Ω
∂

w
σ w , (9) 

where ρp is the density of the deformable particle and σ(w) is the Cauchy stress of the solid phase 
as a function of the displacement. 

We consider the hyperelastic particle as an incompressible Neo-Hookean material, which is 
described using the following strain energy density function [34, 46] 

 )3(
2

0 −= CI
G

W . (10) 

In the above, G0 is the shear modulus of the hyperelastic particle and )(CtrI C =  is the first 

invariant of the right Cauchy-Green tensor, T=C F F , where = ∇ +XF w I  is the deformation 

gradient tensor with X denoting the reference position. The corresponding Cauchy stress of the 
Neo-Hookean material is expressed as 

 1( ) TJ −=σ w PF , (11) 
where J is the determinant of the deformation gradient tensor, F, and J =1 for an incompressible 

Neo-Hookean material.. 
W∂=

∂∇X

P
w

 is the first Piola-Kirchhoff stress. 

The traction force on the particle-fluid interface is continuous, written as 
 ( ) p f f E f• = • + •σ w n σ n σ n , (12) 

where np is the unit normal vector directed from the particle surface into the fluid in the 

reference frame,  ( )T
f p µ= − + ∇ + ∇σ I u u and ( )1

2E f fε ε= − •σ EE E E I are, respectively, the 

hydrodynamic stress tensor and the Maxwell stress tensor. 

 3.  Numerical Implementation and Code Validation 

The strongly coupled governing equations are solved based on the ALE method, in which the 
particle movement and deformation are tracked in a Lagrangian manner and the fluid flow and 
the electric field are simultaneously solved in an Eulerian framework. Detailed implementation 
of this numerical technique on the simulation of particle motion in viscous fluids was first 
introduced by Hu et al.[43-44] In the present study, a commercial finite-element package 
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COMSOL (version 3.5a, www.comsol.com) operated with MATLAB (version 2009a, 
www.mathworks.com) in a high-performance cluster is exploited to simultaneously solve the 
particle-fluid-electric field coupled system using the ALE method. The computational domain 
consisting of the fluid domain Ωf and the particle domain Ωp (Figure 1) is discretized using 
quadratic triangular elements to satisfy the moving mesh requirement. A denser mesh is 
designated surrounding the particle to ensure that all the obtained results are fully converged and 
mesh-independent.  

Without solving the solid phase, the developed ALE technique has been successfully 
employed to simulate the pressure-driven motion of rigid particles in a cylindrical channel [47] 
and a converging-diverging microchannel [45], which indicate, respectively, good agreements 
with analytical solutions and experimental data. In addition, the electrokinetic motions of rigid 
particles in microchannels [37-41] and nanopores [48] have been comprehensively studied using 
the ALE technique, which reveals that the DEP effect must be taken into account in the modeling 
of electrokinetic motion of rigid particles in microfluidic devices.  

In order to validate the present numerical model for deformable particles, we previously 
reproduced the deformation of a RBC under the stress generated by optical tweezers [49]. The 
prediction was in good agreement with the experimental date of Mills et al. [50]. In addition, we 
simulate the deformation of a circular particle subjected to a shear-driven flow, which is 
compared to Gao and Hu’s [32] numerical results obtained by their own ALE code. It is found 
that the circular particle is deformed to a perfect ellipse when the inertial force is negligible 
under very low Reynolds number. Figure 2 shows the stretch ratio of a circular particle as a 
function of the capillary number, which indicates a good agreement between our numerical 
results and Gao and Hu’s results [32]. Here, the stretch ratio is defined as 

1 2 1 2( ) ( )D D D D D= − + , where D1 and D2 are, respectively, the lengths of the major axis and 

the minor axis of the deformed ellipse. The capillary number is defined as 0Ca Gµγ= , where γ 

is the shear rate of the flow. We further verify the validity of the present numerical model to 
simulate the electrokinetic motion of a deformable particle in a microchannel. Here, we consider 
a circular particle translating along the centerline of a slit channel and assume the shear modulus 
of the particle is very large (G0 = 337 Pa) which refers to a rigid particle. Figure 3 shows the 
dimensionless particle velocity normalized by µζε Epf  as a function of the ratio of the particle 

diameter to the height of the microchannel. It is shown that the numerical results obtained by the 
present numerical model for deformable particles also recover the predictions obtained by 
previous numerical models for the limiting case of rigid particles [37-41]. 

4.  Results and Discussion 

The physical properties of the aqueous solution used in the present study include the fluid 
density, ρf = ρp = 1×103 kg/m3, the fluid viscosity, µ = 1×10–3 Pa⋅s and the fluid permittivity, εf = 
7.08×10–10 F/m. The particle of radius a = 1 µm and length Lp = 12 µm is initially positioned at 
(xp0, yp0) = (–20 µm, 0). The length of the slit channel is L = 100 µm and the channel is assumed 
to be uncharged without further specification. The particle is always moving from left to right in 
the present study. In the following, the importance of the DEP effect is first demonstrated. 
Subsequently, the effects due to the shear modulus and the zeta potential of the particle, the 
applied electric field, and the solid boundary on the particle deformation are investigated. 

4.1 The Effect of DEP 
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We assume the initial particle orientation with respect to the centerline of the microchannel is 
θp0 = 60°. The externally applied electric field, the zeta potential of the particle, and the height of 
the microchannel are, respectively, E = 10 KV/m, ζp = –50 mV and d = 50 µm. Figure 4 shows 
the dynamics of a hyperelastic particle when G0 = 25 Pa (Figures 4a and 4d), G0 = 50 Pa (Figures 
4b and 4e) and G0 = 500 Pa (Figures 4c and 4f) at seven different time steps (from left to right): t 
= 0, 12, 24, 36, 48, 72 and 100 ms. The left (a, b, and c) and right (d, e, and f) columns in Figure 
4 are the results obtained by the model with and without considering the DEP effect. When the 
DEP effect is not considered, the second term, E fσ n� , on the right-hand-side of equation (12) is 

dropped. For the low shear modulus of G0 = 25 Pa (Figures 4a and 4d), the particle deforms 
significantly at the beginning (t = 12 ms). In the absence of the DEP effect (Figure 4d), the 
particle remains curved while translating. However, with the DEP effect (Figure 4a), the particle 
rotates clockwise due to a net torque, causing an alignment to the external electric field. This 
DEP particle alignment phenomenon has been experimentally observed in our previous study 
and also predicted using the numerical model for rigid cylindrical particles [37]. In addition, van 
den Heuvel et al. [35] also experimentally observed the DEP alignment of rod-like microtubules. 
Interestingly, the particle deformation decreases during the alignment process, which is 
attributed to the decrease in the non-uniformity of the electric field on the particle surface. As the 
shear modulus increases, the particle becomes more rigid, which in turn decreases the 
deformation, as shown in Figure 4b. Figure 4c demonstrates that the particle with G0 = 500 Pa 
can be regarded as a rigid particle. However, the DEP particle alignments predicted in Figures 4a, 
4b and 4c almost follow the same tendency. When the term E fσ n� is removed from the right-

hand-side of equation (12) to neglect the DEP effect, the particle alignment to the applied electric 
field by rotation is not reflected in Figures 4d, 4e or 4f. Thus, the DEP effect is responsible for 
the DEP particle alignment by rotation and consequent relaxation of particle deformation. 

If the initial particle orientation with respect to the centerline of the microchannel is θp0 = 90°, 
the torque acting on the particle is zero because of  a symmetric distribution of the DEP force on 
the particle surface with respect to the centerline of the microchannel. As a result, the particle 
cannot be aligned to the external electric field at this singular initial orientation in the absence of 
any perturbation. Figure 5a shows the equilibrium particle shape when E = 20 KV/m, G0 = 25 
Pa, ζp = –50 mV and d = 50 µm. When the particle moves from left to right, its equilibrium 
deformation is in a “C” shape, which is symmetric with respect to the centerline of the 
microchannel. This prediction is very similar to the numerical result obtained by Swaminathan et 
al. [36] without considering the DEP effect. However, Figure 5a also demonstrates that the 
particle deformation with considering the DEP effect is more significant than that without 
considering DEP effect. At the beginning, the distribution of the DEP force on the particle 
surface is symmetric with respect to the center of the undeformed particle, which does not 
contribute to the particle deformation. As the particle curls up due to a higher Smoluchowski slip 
velocity at the two ends of the particle, the electric field around the particle becomes asymmetric 
with respect to the center of the deformed particle. Accordingly, the distribution of the DEP 
force on the particle surface becomes asymmetric with respect to the center of the deformed 
particle, as shown in Figure 5b. This DEP effect further aids the particle deformation. Therefore, 
the particle deformation is mainly due to the inherently non-uniform Smoluchowski slip velocity 
on the particle surface and also the induced asymmetric DEP force with respect to the center of 
the deformed particle.  
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Figure 6 shows the effect of the applied electric field on the steady averaged particle velocity 
in the x direction normalized by µζε EU pf=0  when G0 = 25 Pa, θp0 = 90°, ζp = –50 mV and d 

= 50 µm. When the particle reaches its equilibrium state, its steady averaged particle velocity in 
the x direction is defined as 

 
1

x
p

p

p

w
d

tU
d

∂ Ω
∂=

Ω

∫

∫
, (13) 

where wx is the particle displacement in the x direction. The DEP effect is relatively weak when 
the applied electric field is relatively low. Hence, the averaged particle velocity with considering 
the DEP is very close to that without considering the DEP when the applied electric field is E = 5 
KV/m. However, the DEP effect is proportional to the square of the electric field strength. As the 
electric field increases, the averaged particle velocity with considering the DEP significantly 
deviates from that without considering the DEP. As the net DEP force is directed toward the 
negative x direction, the DEP effect tends to slow down the particle motion, as shown in Figure 6. 
The DEP effect plays an important role in the particle deformation and the particle mobility. As a 
result, the DEP effect must be taken into account in the modeling of electrokinetic motion of 
deformable particles in microfluidics, and is thus considered in all the following simulations. 

4.2 The Effect of the Shear Modulus of the Particle 

As indicated in Figure 4, the particle deformation increases as the shear modulus of the 
particle decreases. However, the particle deformation decreases owing to the particle alignment 
to the electric field. To assess the influence of DEP force on particle deformation without particle 
rotation and alignment, we set the initial particle orientation to θp0 = 90° and investigate the 
effect of the shear modulus of the particle on its deformation. Figure 7 shows the transient 
deformation of a hyperelastic particle when E = 10 KV/m, ζp = –50 mV, d = 50 µm, G0 = 12.5 Pa 
(Figure 7a), G0 = 25 Pa (Figure 7b), G0 = 50 Pa (Figure 7c) and G0 = 100 Pa (Figure 7d). As the 
electric field near the two ends of the particle is higher than that in the other regions, the non-
uniform Smoluchowski slip velocity on the particle surface thus generates a larger shear force at 
the two ends of the particle, which tends to curl up the particle to a “C” shape as it moves from 
left to right. As mentioned earlier in Figure 5, the DEP effect also enhances the particle 
deformation. Obviously, a smaller shear modulus implies a softer particle, which is easier to 
deform, as shown in Figure 7. 

4.3 The Effect of the Applied Electric Field 

The externally applied electric field can effectively change the Smoluchowski slip velocity 
on the particle surface and also the DEP force acting on the particle, which in turn affects the 
particle deformation. Figure 8 shows the transient deformation of a hyperelastic particle under 
two different electric fields E = 20 KV/m (Figure 8a) and E = 30 KV/m (Figure 8b) when G0 = 
25 Pa, θp0 = 90°, ζp = –50 mV and d = 50 µm. Clearly, the equilibrium particle shape when E = 
10 KV/m (Figure 7b) is less deformed than the case of E = 20 KV/m (Figure 8a), which is less 
deformed than the case of E = 30 KV/m (Figure 8b). Therefore, control of the external electric 
field is a very efficient way to manipulate the particle deformation. 

Fluid-structure interaction is a two-way coupling problem. Hence, the particle deformation 
also significantly affects the flow field around the particle. Figure 9 illustrates the evolution of 
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the flow field around the particle when E = 20 KV/m, G0 = 25 Pa, θp0 = 90°, ζp = –50 mV and d 
= 50 µm. Under the joint effects of the particle movement and the EOF in the vicinity of the 
charged particle, a vortex is induced at either end of the particle as shown in Figure 9a. As the 
particle curls up, the two ends of the particle approach each other, which in turn brings the two 
vortices closer to each other as depicted in Figures 9b, 9c and 9d. The fluid outside the induced 
vortex moves very slowly in the direction opposite to the particle movement. This is attributed to 
the EOF induced by the surface charge of the particle.  

We further investigate the effect of the electric field on the particle behavior when the 
particle is not initially placed perpendicular to the centerline of the microchannel. In such case, 
the particle alignment to the applied electric field and possible relaxation of particle deformation 
come into play. Figure 10 shows the transient behavior of a hyperelastic particle under two 
different electric fields E = 20 KV/m (Figure 10a) and E = 30 KV/m (Figure 10b) when G0 = 50 
Pa, θp0 = 60°, ζp = –50 mV and d = 50 µm. Note that the same case under E = 10 KV/m is shown 
in Figure 4b. A higher electric field leads to a higher Smoluchowski slip velocity at the two ends 
of the particle, which accordingly induces a larger particle deformation at the beginning. 
Subsequently, the particle is aligned to the electric field due to the DEP effect which increases 
with the electric field. Figure 10 demonstrates that a higher electric field leads to a faster particle 
alignment, which has also been observed in our previous experimental study [37]. When the 
particle becomes nearly parallel to the applied electric field, the particle deformation is almost 
eliminated.  

4.4 The Effect of the Zeta Potential of the Particle 

Figure 11 shows the effect of the zeta potential of the particle on the particle deformation 
when E = 20 KV/m, G0 = 25 Pa, θp0 = 90° and d = 50 µm. In order to compare the equilibrium 
particle shapes at approximately the same location under different zeta potentials, the time step is 
accordingly scaled based on the magnitude of the zeta potential of the particle. It is shown in 
equation (8) that the Smoluchowski slip velocity is proportional to the applied electric field and 
also the zeta potential of the particle. Therefore, a higher zeta potential leads to a larger non-
uniformity of the Smoluchowski slip velocity on the particle surface, which in turn increases the 
particle deformation. It should be noticed that the electrokinetics-induced particle deformation is 
totally different from that subjected to a pressure-driven flow. According to the experimental 
observations [23-24], the present cylindrical particle subjected to a pressure-driven flow is 
expected to curl up as a horizontally reversed “C” shape when it moves from left to right.  

4.5 The Effect of the Rigid Channel Boundary 

Figure 12 shows the boundary effect on the particle deformation when E = 10 KV/m, G0 = 25 
Pa, θp0 = 90°, ζp = –50 mV and t = 50 ms. When the distance between the rigid walls decreases, 
the electric field between the particle and the rigid wall is enhanced, which in turn increases the 
Smoluchowski slip velocity on the particle surface. As a result, the particle deformation slightly 
increases when the boundary effect becomes more pronounced. However, the particle velocity 
decreases mainly due to the increasing wall retardation effect arising from the stationary rigid 
boundary. 

In all of the above results, the zeta potential of the rigid wall is ζw = 0. In order to clearly 
assess the effects of charged walls, we consider a case when the zeta potential of the particle and 
the rigid wall are, respectively, is ζp = 0 and ζw = 50 mV, and keep all the other conditions in 
Figure 12 unchanged. In this case, the particle motion is driven by the EOF originating from the 
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channel walls. As the velocity profile of EOF is plug-like, the flow field around the particle 
suspended in an unbounded domain is uniform, which is unable to induce particle deformation. It 
is indeed found that the particle does not deform when d = 50 µm and 40 µm, where the 
boundary effect is very small. As the distance between the two rigid walls further decreases to d 
= 30 µm and 20 µm, the confinement effect increases and the particle starts to deform. However, 
the particle deformation is still much smaller than those shown in Figure 12. Thus, the effect of 
EOF in a charged confined channel on particle deformation can be largely neglected in 
comparison to the effects of particle electrophoresis.   

5.  Concluding Remarks 

We have developed a numerical model to study the electrokinetic motion of a 2D 
hyperelastic particle, focusing on the electrokinetics-induced particle deformation in a confined 
microchannel. The inertial force is negligible due to a very low Reynolds number in 
microfluidics. The shear force arising from the non-uniform Smoluchowski slip velocity on the 
particle surface is responsible for the electrokinetics-induced particle deformation. Furthermore, 
the asymmetric DEP force with respect to the center of the deformed particle also enhances the 
particle deformation when symmetries of the particle prevent its rotation.  

When the cylindrical particle is initially perpendicular to the applied electric field, it curls up 
like a “C” shape as it moves from left to right. The electrokinetics-induced particle deformation 
is opposite to the particle deformation subjected to a pressure-driven flow when the particle 
moves in the same direction. A particle with a smaller shear modulus is softer, which is easier to 
deform. Also, the applied electric field, the zeta potential of the particle and the boundary effect 
play an important role in the particle deformation. However, the plug-like EOF arising from the 
charged channel walls indicates a minor effect on the particle deformation. When the cylindrical 
particle is not initially perpendicular to the applied electric field, the DEP effect progressively 
aligns the particle with its longest axis parallel to the applied electric field. Furthermore, a higher 
electric field leads to a faster particle alignment, which is in good agreement with our previous 
experimental study [37]. Interestingly, the particle alignment decreases the particle deformation 
because of a higher uniformity of the electric field. The developed numerical model may prove 
useful in understanding and controlling the electrokinetics-induced deformation of biological 
cells, for example RBC, in microfluidics. 
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Figure 1 Schematics of the electrokinetic motion of a deformable cylindrical particle in a straight 
microchannel. 
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Figure 2 Stretch ratio of a circular particle subjected to a shear-driven flow as a function of 
capillary number. Circles and crosses respresent, respectively, our numerical results and the 
results obtained by Gao and Hu [27]. The inset schematically illustrates the deformation of the 
circular particle into an ellipse. 
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Figure 3 Dimensionless translational velocity normalized by µζε Epf  of a circular particle 

translating along the centerline of a slit microchannel as a function of the ratio of the particle 
diameter to the height of the microchannel. Solid line and circles represent, respectively, the 
results obtained by the model for a rigid particle and the present model for a deformable particle 
with a very high shear modulus. The ratio of the zeta potential of the microchannel to that of the 
particle is 0.375.  
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Figure 4 Dynamics of a hyperelastic particle when G0 = 25 Pa (a and d), G0 = 50 Pa (b and e) and 
G0 = 500 Pa (c and f) at seven different time steps (from left to right): t = 0, 12, 24, 36, 48, 72 
and 100 ms. The results in (a, b and c) and (d, e, and f) are, respectively, obtained by the models 
with and without considering the DEP effect. E = 10 KV/m, θp0 = 60°, ζp = –50 mV and d = 50 
µm. 



17 

 

 
 

 

(a)

2.5µm

 

 

Figure 5 (a) Equilibrium shape of a hyperelastic particle when E = 20 KV/m, G0 = 25 Pa, θp0 = 
90°, ζp = –50 mV and d = 50 µm. Solid line and circles represent, respectively, the results 
obtained by the models with and without considering the DEP effect. (b) Distribution of the 
electric field around the deformed particle. The color levels denote the magnitude of the electric 
field strength and the arrows on the particle surface indicate the distribution of the DEP force. 
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Figure 6 Steady averaged particle velocity in the x direction normalized by µζε EU pf=0  as a 

function of the applied electric field when G0 = 25 Pa, θp0 = 90°, ζp = –50 mV and d = 50 µm. 
Solid line with circles and dashed line with squares represent, respectively, the results obtained 
by the models with and without considering the DEP effect.  
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Figure 7 Deformation of a hyperelastic particle when G0 = 12.5 Pa (a), G0 = 25 Pa (b), G0 = 50 
Pa (c) and G0 = 100 Pa (d) at six different time steps (from left to right): t = 0, 4, 8, 16, 24 and 32 
ms. E = 10 KV/m, θp0 = 90°, ζp = –50 mV and d = 50 µm. 
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Figure 8 Deformation of a hyperelastic particle when E = 20 KV/m (a) and E = 30 KV/m (b) at 
six different time steps (from left to right): t = 0, 2, 4, 8, 12 and 16 ms (a) and t = 0, 1.33, 2.67, 
5.33, 8 and 10.67 ms (b). G0 = 25 Pa, θp0 = 90°, ζp = –50 mV and d = 50 µm. 
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Figure 9 Flow field around a hyperelastic particle at t = 1 ms (a), 2 ms (b), 4 ms (c) and 12 ms 
(d) when E = 20 KV/m, G0 = 25 Pa, θp0 = 90°, ζp = –50 mV and d = 50 µm. The color levels 
denote the x-component flow velocity and the streamlines with arrows indicate the flow field. 
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Figure 10 Dynamics of a hyperelastic particle when E = 20 KV/m (a) and E = 30 KV/m (b) at six 
different time steps (from left to right): t = 0, 6, 12, 18, 24, 36 and 50 ms (a) t = 0, 4, 8, 12, 16, 
24 and 33.3 ms. G0 = 50 Pa, θp0 = 60°, ζp = –50 mV and d = 50 µm. 
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Figure 11 Equilibrium shape of a hyperelastic particle when E = 20 KV/m, G0 = 25 Pa, θp0 = 90° 
and d = 50 µm. Solid line, circles and crosses denote, respectively, the equilibrium particle shape 
when ζp = –50 mV (t = 16 ms), –25 mV (t = 32 ms) and –10 mV (t = 80 ms). 
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Figure 12 Equilibrium shape of a hyperelastic particle when E = 10 KV/m, G0 = 25 Pa, θp0 = 90° 
and ζp = –50 mV. Solid line, circles, crosses and diamonds denote, respectively, the equilibrium 
particle shape when d = 50, 40, 30 and 20 µm. 

 

 


